Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 12

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  drinking water
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
Open Chemistry
|
2004
|
vol. 2
|
issue 3
491-499
EN
A differential pulse voltammetric (DPV) method for the determination of bromate in drinking water, after pre-concentration on γ-Al2O3, is proposed. The reduction peak of bromate has been observed at the potential Ep-−1.6 V in an ammonia buffer as a supporting electrolyte. The method has been successfully applied to determine a bromate concentration of 2.5 μg·l−1 in drinking water (RSD=6.1%, n=7). A sample pre-treatment with a column filled with mixed cation-exchange resin in Ag, Ba and H forms was needed before pre-concentration of bromate on alumina.
EN
Some oxyhalides can be found in drinking waters as inorganic disinfection byproducts. An on-line coupled capillary isotachophoresis-capillary zone electrophoresis (CITP-CZE) method was developed for the analysis of chlorate, chlorite and bromate in water. The optimized CITP-CZE electrolyte system consisted of the following: 10 mM-HCl+20 mM-β-Alanine (leading electrolyte), 5 mM-succinic acid (terminating electrolyte), and 10 mM-succinic acid +5 mM-β-Alanine +0.1% HPMC (carrier electrolyte). A clear separation of oxyhalides from other components of drinking water was achieved within 25 min. Method characteristics, i.e., linearity (0–200 ng/mL), accuracy (88–110%), intra-assay (3–5%), quantification limit (5–15 ng/mL), and detection limit (2–5 ng/mL), were determined. Minimum labor requirements, sufficient sensitivity and low running cost are important attributes of this method. It was found that the developed method is useful for the routine analysis of oxyhalides in water.
EN
Safe water is still a major problem for travellers in many countries worldwide. In the last decade several new technical developments were made and more data exist about traditional procedures to produce safe water. This update includes such data with special regard to UV-C and held devices and SODIS.
EN
This study determines the basic parameters of Monod kinetics for microbial growth within a membrane bioreactor using the Zenon ZeeWeed 10 MBR system. The influent nitrate concentration was kept at 70 ± 2 mg L-1 NO3ˉ. During the experiments a constant concentration of activated sludge was maintained at approximately 0.76 g L-1 under anoxic conditions. Sucrose was added to the activated sludge as a carbon source. The Monod kinetic parameters were calculated by numerical interpolation, by considering experimental data. The maximum specific growth rate of the biomass was determined to be 0.31 h-1, half-saturation constant 5.4 mg L-1, and yield coefficient 0.35 mg biomass mg-1 COD. Afterwards, a dynamic simulation was performed within the calculated parameters. The dynamic concentration profiles for substrate and biomass were determined at different dilution rates within the range of 0.8 to 5 d-1.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.