Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

Refine search results

Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  dispersion kinetics modelling, solid particle-liquid dispersion, tooth impeller
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
Content available remote

Dispersion Kinetics Modelling

100%
PL
Stirred tanks for dispersion, the pre-dispersion of two immiscible liquids or particulate solidliquid suspension are extensively used in the chemical, food, pharmaceutical and metallurgical industries, for purposes such as suspension/emulsion polymerisation, heterogeneous/phase-transfer catalytic chemical reactions, paint production and hydrometallurgical solvent extraction. The aim of this paper is to propose the simple dispersion model enabling the prediction of particle size changes over time and taking into account the type of breakup mechanisms, the non-homogeneity of local turbulent energy dissipation rate in an agitated vessel and the effect of the number of times the liquid passes through the impeller and the impeller zone. The model was successfully tested on data published by Ditl et al. (1981).
2
Publication available in full text mode
Content available

Dispersion Kinetics Modelling

100%
PL
Stirred tanks for dispersion, the pre-dispersion of two immiscible liquids or particulate solidliquid suspension are extensively used in the chemical, food, pharmaceutical and metallurgical industries, for purposes such as suspension/emulsion polymerisation, heterogeneous/phase-transfer catalytic chemical reactions, paint production and hydrometallurgical solvent extraction. The aim of this paper is to propose the simple dispersion model enabling the prediction of particle size changes over time and taking into account the type of breakup mechanisms, the non-homogeneity of local turbulent energy dissipation rate in an agitated vessel and the effect of the number of times the liquid passes through the impeller and the impeller zone. The model was successfully tested on data published by Ditl et al. (1981).
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.