Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 10

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  conductivity
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
The introduction of an ultrathin zinc oxide (ZnO) layer formed by the atomic layer deposition (ALD) technique was found to improve the operation parameters of nickel phthalocyanine (NiPc) based photovoltaic cells with a transparent bottom electrode, indium tin oxide (ITO). This improvement is attributed to several reasons, such as I) increase of photovoltaic yield in ITO/p-NiPc/n-ZnO/Al cells incorporating a hybrid heterojunction as compared to single-layer ITO/NiPc/Al cells, II) enhancement of the overall spectral response in the double-layer cells and III) extension of long-term operational stability.
EN
Within the framework of the modified semi-classical Fuchs-Sondheimer model, we investigated theoretically the electrical resistivity of multilayered structures (MLS) consisting of alternating metallic layers (of different purity and different thicknesses) in a transverse magnetic field as functions of the ratio of the adjacent layer thicknesses and the magnetic field value. We have derived both a general formula (valid at arbitrary values of layer thicknesses) and asymptotic expressions that are valid when metallic layers are thick or thin compared with the electron mean free path. We found a non-monotonic behavior in the resistivity vs. the value of an applied magnetic field. As we demonstrated, this behavior is sensitive to the characteristics of the electron scattering in the interlayer interfaces in low magnetic fields. Moreover, the MLS resistivity oscillates in high magnetic fields with the field value (or with the layer thicknesses). The oscillation includes the harmonics that correspond both to the each layer thicknesses and the total thickness. The intensity of the oscillation is determined by the diffusive electron scattering in the interfaces, and the oscillation amplitude is proportional to the coefficient of the electron transmission through the interlayer interfaces. We have calculated numerically the resistivity in a wide range of fields and layer thicknesses at various values of the parameters of the interface and bulk electron scattering.
3
100%
Open Chemistry
|
2007
|
vol. 5
|
issue 3
824-834
EN
Attempts were made to plasma deposit an oriented π-conjugated polymer of pyrrole (Py) on paper surfaces in order to produce electrically conductive layers. The N/C atomic ratio of 0.13–0.24 was observed for all treatment conditions. This implies the nature of the deposition formed on the paper surface via pulsed plasma is different from that of pyrrole monomer. An increase in conductivity of all pyrrole-plasma treated papers was observed. The 50 W RF-power with 5 min plasma exposed paper sample shows 8.15 × 10−9 S·cm−1 conductivity. The conductivity measurements indicated a plasma-enhanced ring-opening reaction mechanism of pyrrole. [...]
4
88%
EN
We used STM to study the conductivity of 32 nucleotide long DNA molecules chemically attached to a gold surface. Two oligonucleotides containing all four base types namely G, A, C, T, one single stranded and one double helical, all showed conductance data significantly higher than DNA containing only T and A that were either single stranded d(T32) or double helical d(T32).d(A32) in confirmation. Within each sequence group, the conductivity of the double helical form was always higher than that of the single strand. We discuss the impact of structure, particular base stacking and affinity to the phase transition.
Open Physics
|
2006
|
vol. 4
|
issue 1
73-86
EN
The annealing-time dependence of the electrical conductivity of multilayered single-crystal and polycrystalline metal films has been analyzed theoretically within the frame of the semi-classical approach. It is demonstrated that changes in the electrical conductivity which are caused by the diffusion annealing allow for investigating the processes of the bulk and grain-boundary diffusion, and for estimating the coefficients of the diffusion. The electrical conductivity was calculated and the numerical analysis of the diffusion-annealing time dependence was performed at various parameters.
Open Physics
|
2010
|
vol. 8
|
issue 2
178-183
EN
The dielectric properties of microparticles were characterized by quadrupole electrode geometry. Quadruple microelectrode geometry with hyperbolic active interfaces was designed and fabricated. The dielectrophoretic mobility coefficients of the polystyrene microparticles were attained from negative dielectrophoresis. With the mobility coefficients and hypothetical inflection frequencies of the particles, the permittivity and electric conductivity of the particles in suspension were calculated. This demonstration established that dielectrophoretic mobility attained with a hyperbolic electrode can be used to characterize microparticle properties in suspension.
9
Content available remote

Segregated network polymer/carbon nanotubes composites

75%
EN
In this work we present the preparation of conductive polyethylene/carbon nanotube composites based on the segregated network concept. Attention has been focused on the effect of decreasing the amount of filler necessary to achieve low resistivity. Using high- and low-grade single-walled carbon nanotube materials we obtained conductive composites with a low percolation threshold of 0.5 wt.% for high-grade nanotubes, about 1 wt% for commercial nanotubes and 1.5 wt% for low-grade material. The higher percolation threshold for low-grade material is related to low effectiveness of other carbon fractions in the network formation. The electrical conductivity was measured as a function of the single-walled carbon nanotubes content in the polymer matrix and as a function of temperature. It was also found that processing parameters significantly influenced the electrical conductivity of the composites. Raman spectroscopy was applied to study single wall nanotubes in the conductive composites.
Open Physics
|
2006
|
vol. 4
|
issue 1
87-104
EN
The ac electrical parameters of thermally evaporated zinc phthalocyanine, ZnPc, semiconducting thin films was measured in the temperature range of 180–390 K and frequency between 0.1 and 20 kHz. Aluminum electrode contacts were utilized to sandwich the organic ZnPc semiconducting films. Capacitance and loss tangent decreased rapidly with frequency at high temperatures, but at lower temperatures a weak variation is observed. An equivalent circuit model assuming ohmic contacts could qualitatively and successfully explains capacitance and loss tangent behavior. The ac conductivity showed strong dependence on both temperature and frequency depending on the relevant temperature and frequency range under consideration. Ac conductivity σ (ω) is found to vary with ω, as ω s with the index s ≤ 1.35 suggesting a dominant hopping conduction process at low temperatures (< 250 K) and high frequency. The conductivity of some samples did not increase monotonically with temperature. This behavior was attributed to oxygen exhaustion of the sample as its temperature is increased. The ac conductivity behavior at low temperatures of ZnPc films could be described well by Elliott model assuming hopping of charge carriers between localized sites.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.