Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  chirality
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Infrared and Raman spectra of three chiral molecular conductors (EDT-TTF-OX)2AsF6, comprising of two salts based on enantiopure EDT-TTF-OX donor molecules and one based on their racemic mixture, have been measured as a function of temperature. In the frequency range of the C=C stretching vibrations of EDT-TTF-OX, charge-sensitive modes are identified based on theoretical calculations for neutral and oxidized EDT-TTF-OX using density functional theory (DFT) methods. The positions of C=C stretching modes in both Raman and infrared spectra of the (EDT-TTF-OX)2AsF6 materials are analyzed assuming a linear relationship between the frequency and charge of the molecule. The charge density on the EDTTTF-OX donor molecule is estimated to be +0.5 in all investigated materials and does not change with temperature. Therefore we suggest, that M-I transition observed in (EDT-TTF-OX)2AsF6 chiral molecular conductors at low temperature is not related to the charge ordering mechanism.
EN
Carotenoids in eukaryotic phototrophic organisms can be classified into two groups; β-carotene and its derivatives, and α-carotene and its derivatives. We re-examined distribution of α-carotene and its derivatives among various taxa of aquatic algae (17 classes) and land plants. α-carotene and its derivatives were found from Rhodophyceae (macrophytic type), Cryptophyceae, Euglenophyceae, Chlorarachniophyceae, Prasinophyceae, Chlorophyceae, Ulvophyceae, Charophyceae, and land plants, while they could not be detected from Glaucophyceae, Rhodophyceae (unicellular type), Chryosophyceae, Raphidophyceae, Bacillariophyceae, Phaeophyceae, Xanthophyceae, Eustigmatophyceae, Haptophyceae, and Dinophyceae. We also analyzed the chirality of α-carotene and/or its derivatives, such as lutein and siphonaxanthin, and found all of them had only (6'R)-type, not (6'S)-type.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.