Bacterial cancer therapy is a concept more than 100 years old - yet, all things considered, it is still in early development. While the use of many passive therapeutics is hindered by the complexity of tumor biology, bacteria offer unique features that can overcome these limitations. Microbial metabolism, motility and sensitivity can lead to site-specific treatment, highly focused on the tumor and safe to other tissues. Activation of tumor-specific immunity is another important mechanism of such therapies. Several bacterial strains have been evaluated as cancer therapeutics so far, Salmonella Typhimurium being one of the most promising. S. Typhimurium and its derivatives have been used both as direct tumoricidal agents and as cancer vaccine vectors. VNP20009, an attenuated mutant of S. Typhimurium, shows significant native toxicity against murine tumors and was studied in a first-in-man phase I clinical trial for toxicity and anticancer activity. While proved to be safe in cancer patients, insufficient tumor colonization of VNP20009 was identified as a major limitation for further clinical development. Antibody-fragment-based targeting of cancer cells is one of the few approaches proposed to overcome this drawback.
The tumour microenvironment diversity among patients poses a challenge for conventional therapies, leading to limited efficacy. Furthermore, conventional methods are inherently associated with a negative impact on healthy tissues. Personalized immunotherapy, focused on individual tumor characteristics, has emerged as a potential solution. Neoantigens, unique antigens arising from tumour-specific mutations, play a crucial role in personalized therapy. Identifying and utilizing neoantigens through therapeutic vaccines can induce an immune response specifically against tumour cells, offering a more targeted and less toxic for healthy tissues approach to cancer treatment. The vaccines can potentially lead to tumour regression and improved outcomes. The effectiveness of this therapy is still limited due to phenomena such as immune escape. However, ongoing scientific research, technological advancements, and emerging combination therapies offer hope for the success of neoantigen-based therapeutic cancer vaccines, ushering in a new era in personalized oncology.
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.