Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 9

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  biosensor
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
Content available remote

Low Bod Determination Methods: The State-of-the-Art

100%
|
|
vol. 33
|
issue 4
629-637
EN
Biochemical Oxygen Demand (BOD) is an important factor used to measure water pollution. This article reviews recent developments of microbial biosensors with respect to their applications for low BOD estimation. Four main methods to measure BOD using a biosensor are described: microbial fuel cells, optical methods, oxygen electrode based methods and mediator-based methods. Each of them is based on different principles, thus a different approach is required to improve the limit of detection. A proper choice of microorganisms used in the biosensor construction and/or sample pre-treatment processes is also essential to improve the BOD lower detection limit.
|
|
vol. 19
|
issue 3
383-391
EN
Phenol index is considered as an important indicator of water purity and quality. Usually phenol index is determined by a spectrophotometric method the calibration being based on phenol standards. Unfortunately, the absorptivities of different phenols compounds differ from each other. This leads to significant uncertainty concerning content of phenols in water. It is shown that the same shortage of the phenol index appears also if it is determined using an amperometric biosensor based on tyrosinase. The sensitivity of the biosensor response to four phenol compounds: phenol, catechol, 3-cresol and 4-chlorophenol was examined, as well as possible interactions between phenols, according to 24 factorial experiment. It was proved that individual phenols affect phenol index independently from each other, ie no significant interaction between phenols was detected. However, sensitivity of the biosensor to different phenols is not the same. Relationship between phenol index and concentrations of phenols in water is discussed.
PL
Indeks fenolowy jest ważnym wskaźnikiem czystości i jakości wody. Oznacza się go zwykle metodami spektrofotometrycznymi z 4-aminoantypiryną, stosując fenol jako wzorzec. Ponieważ współczynniki absorpcji różnych związków fenolowych różnią się, wyznaczona wartość indeksu fenolowego obarczona jest znaczną niepewnością. Podobny efekt występuje, gdy indeks fenolowy oznaczany jest przy użyciu biosensora amperometrycznego opartego na tyrozynazie. W pracy wyznaczono czułości biosensora w stosunku do czterech związków fenolowych: fenolu, katecholu, 3-krezolu oraz 4-chlorofenolu oraz zbadano możliwe interakcje pomiędzy fenolami. Doświadczenia prowadzono według planów czynnikowych 24. Wykazano, że poszczególne fenole wpływają na indeks fenolowy niezależnie od siebie, tzn. nie stwierdzono istotnych interakcji pomiędzy fenolami. Jednak czułość biosensora jest różna w stosunku do różnych fenoli. Przedyskutowano zależność pomiędzy indeksem fenolowym a stężeniami fenoli w wodzie.
|
|
vol. 49
|
issue 2
481-490
EN
Glycophorin A (GPA), the major sialoglycoprotein of the human erythrocyte membrane, was isolated from erythrocytes of healthy individuals of blood groups A, B and O using phenol-water extraction of erythrocyte membranes. Interaction of individual GPA samples with three lectins (Psathyrella velutina lectin, PVL; Triticum vulgaris lectin, WGA and Sambucus nigra I agglutinin SNA-I) was analyzed using a BIAcoreTM biosensor equipped with a surface plasmon resonance (SPR) detector. The experiments showed no substantial differences in the interaction between native and desialylated GPA samples originating from erythrocytes of either blood group and each of the lectins. Desialylated samples reacted weaker than the native ones with all three lectins. PVL reacted about 50-fold more strongly than WGA which, similar to PVL, recognizes GlcNAc and Neu5Ac residues. SNA-I lectin, recognizing α2-6 linked Neu5Ac residues, showed relatively weak reaction with native and only residual reaction with desialylated GPA samples. The data obtained show that SPR is a valuable method to determine interaction of glycoproteins with lectins, which potentially can be used to detect differences in the carbohydrate moiety of individual glycoprotein samples.
EN
The phenomenon of fluorescence in immunosensors is described in this paper. Both structure and characteristics of biosensors and immunosensors are presented. Types of immunosensors and the response of bioreceptor layers to the reaction with analytes as well as measurements of electrochemical, piezoelectric and optical parameters in immunosensors are also presented. In addition, detection techniques used in studies of optical immunosensors based on light-matter interactions (absorbance, reflectance, dispersion, emission) such as: UV/VIS spectroscopy, reflectometric interference spectroscopy (RIfs), surface plasmon resonance (SPR), optical waveguide light-mode spectroscopy (OWLS), fluorescence spectroscopy. The phenomenon of fluorescence in immunosensors and standard configurations of immunoreactions between an antigen and an antibody (direct, competitive, sandwich, displacement) is described. Fluorescence parameters taken into account in analyses and fluorescence detection techniques used in research of immunosensors are presented. Examples of immunosensor applications are given.
EN
The focus of this review paper is on the design and implementation of smart ‘Sense-and-Treat’ systems using enzyme-biocatalytic systems. These systems were used to perform biomolecular computing and they were functionally integrated with signal responsive materials aiming towards their biomedical use. Electrode interfaces, functionalized with signal-responsive materials, find applications in biocomputing, biosensing, and, specifically, triggered release of bioactive substances. ‘Sense-and-Treat’ systems require multiple components working together, including biosensors, actuators, and filters, in order to achieve closed-loop and autonomous operation. In general, biochemical logic networks were developed to process single biochemical or chemical inputs as well as multiple inputs, responding to nonphysiological (for concept demonstration purposes) and physiological signals (for injury detection or diagnosis). Actuation of drug-mimicking release was performed using the responsive material iron-cross-linked alginate with entrapped biomolecular species, responding to physical, chemical or biochemical signals.
EN
In the paper influence of electromagnetic field (200 MHz) on biosensor matrix component was shown. Specially designed test bench containing the scanner 3D with the robot was used for electromagnetic field monitoring. The scans of electromagnetic field distribution, before and behind sample were collected. Conformation change of studied protein was monitored by UV spectra. It indicates that fragmentation and aggregation of studied protein might occur with time. The stabilization effect caused by electromagnetic 200 MHz in protein solution was found. The effect was dose dependent (cumulative effect of electromagnetic field) and the differences in the absorption intensity between the control sample and samples after exposition were more visible with time.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.