Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 7

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  bioremediation
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
100%
EN
Laccases are blue copper oxidases, found in some plants and secreted by a wide range of ligninolytic fungi. These enzymes are well known for their ability in oxidizing several organic compounds, mainly phenolics and aromatic amines, at the expenses of molecular oxygen. Therefore, they could find application in the field of enzymatic bioremediation of many industrial wastewaters, and in particular to bleach and/or detoxify dye-containing effluents. Not all industrial dyes behave as laccase substrates, but this limitation is often overcome by the judicious use of redox mediators. These could substantially widen the application range of laccases as bioremediation tools. The present study encompasses the main properties of the most used industrial dyes as related to their chemical classification, fungal laccases and their molecular and catalytic features, the use of redox mediators, limitations and perspectives of the use of fungal laccases for industrial dye bleaching.
EN
Salinization and sodification of agricultural lands in arid and semi-arid regions of the world are two limiting factors in the crop production. This study was conducted to evaluate the effect of readily available agricultural residues on changing some chemical properties of saline-sodic soils. Wheat, potato, sunflower, and canola residues were separately added into three saline-sodic soils at a rate of 2% by weight and thoroughly mixed with soils. Control and treated soils were incubated for 168 days at a constant moisture and temperature. The pH, electrical conductivity (EC), soluble cations, available nitrate (NO3-) and phosphorous (P), cation exchange capacity (CEC), and exchangeable sodium percentage (ESP) were measured during the incubation. The EC increased in the response to the incorporation of plant residues, whereas the pH was reduced. The application of organic components in soils increased CEC and decreased ESP. The results showed that the maximum reduction in ESP was observed in the potato treatment because of the highest Ca2+ concentration. The average reduction in ESP of treated soil samples at the end of incubation followed this order: 16.1% (potato residue-treated soil) >12.7% (canola residue-treated soil) >11.1% (wheat residue-treated soil) >9.6% (sunflwer residue-treated soil). The potato residue was the most effective amendment in changing the chemical properties of saline-sodic soils in comparison with other organic residues. The results indicated that the application of organic residues had a positive impact on reducing the soil sodicity and improving the soil fertility depending on their chemical composition.
EN
The encapsulation of living cells within inorganic silica hydrogels is a promising strategy for the design of biosensors, modular bioreactors, and bioremediation devices, among other interesting applications, attracting scientific and technological interest. These hostguest multifunctional materials (HGFM) combine synergistically specific biologic functions of their guest with those of the host matrix enhancing their performance. Although inorganic immobilization hosts present several advantages over their (bio)polymer-based counterparts in terms of chemical and physical stability, the direct contact of cells with silica precursors during synthesis and the constraints imposed by the inorganic host during operating conditions have proved to influence their biological response. Recently, we proposed an alternative two-step procedure including a pre-encapsulation in biocompatible polymers such as alginates in order to confer protection to the biological guest during the inorganic and more cytotoxic synthesis. By means of this procedure, whole cultures of microorganisms remain confined in small liquid volumes generated inside the inorganic host, providing near conventional liquid culture conditions.Moreover, the fact of protecting the biological guest during the synthesis of the host, allows extending the synthesis parameters beyond biocompatible conditions, tuning the microstructure of the matrix. In turn, the microstructure (porosity at the nanoscale, radius of gyration of particles composing the structure, and fractal dimension of particle clusters) is determinant of macroscopic parameters, such as optical quality and transport properties that govern the encapsulation material’s performance. Here, we review the most interesting applications of the two-step procedure, making special emphasis on the optimization of optical, transport and mechanical properties of the host as well as in the interaction with the guest during operation conditions.
BioTechnologia
|
2014
|
vol. 95
|
issue 2
150-159
EN
Zinc oxide nanostructures are interesting nanomaterials with a wide range of applications. Since the physical and chemical properties of ZnO nanoparticles are influenced both by their shape and size, a control of morphology of ZnO structures is needed for their commercial usage. Different chemical, physical, and biological methods used to produce ZnO nanostructures can be found in the literature. The production of ZnO nanoparticles using so-called green methods, using, for example, plant extracts or living organisms, is being investigated as these methods are environmentally friendly and of low-cost. This review also discusses the trends in the biological synthesis of semiconducting nanoparticles.
EN
This article deals with combined abio-bioreductive methods for in-situ removal of chlorinated ethenes. The method is based on the use of bioremediation supported by lactate and chemical reduction using nZVI. The method is compared with the use of the individual methods alone, mainly with nZVI. In an environment with very low permeability a poor contaminant removal efficiency was achieved during repeated application of nZVI (about 50% of the original content of contamination). Separate application of lactate resulted in conversion of PCE to 1,2-cis-DCE, whose degradation occurred very slowly. When using the combined abio-bioreductive method, based on consecutive application of lactates and nZVI, over 75% of the original content of contamination was removed. This article discusses not only the changes in concentrations of contaminants but also pH and ORP. Both methods are also compared from an economic point of view.
PL
Przedstawiono metodę abio-bioredukcji usuwania in-situ chlorowanych etenów. Metoda ta polega na połączeniu bioremediacji, wykorzystującej redukcję mleczanu, i metody chemicznej nZVI. Wyniki tych badań porównano z danymi otrzymanymi z wykorzystaniem jedynie metody chemicznej. W środowisku o bardzo małej przepuszczalności uzyskano stosunkowo niską skuteczność usuwania zanieczyszczeń podczas wielokrotnego stosowania nZVI (około 50% pierwotnej zawartości zanieczyszczeń). Oddzielna aplikacja mleczanu spowodowała konwersję PCE do 1,2-cis-DCE, którego degradacja następowała bardzo powoli. Przy użyciu połączonej metody abio-bioredukcji, opartej na stosowaniu kolejno mleczanów i nZVI, usunięto ponad 75% pierwotnej zawartości zanieczyszczeń. W artykule omówiono nie tylko zmiany w stężeniu zanieczyszczeń, ale również pH i ORP. Oba sposoby porównano również pod względem ekonomicznym.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.