Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

Refine search results

Journals help
Years help
Authors help
Preferences help
enabled [disable] Abstract
Number of results

Results found: 23

Number of results on page
first rewind previous Page / 2 next fast forward last

Search results

Search:
in the keywords:  artificial neural networks
help Sort By:

help Limit search:
first rewind previous Page / 2 next fast forward last
EN
The unit cell edge length, a, of a set of complex cubic perovskites having the general formula A22+BB′O6 is predicted using two methodologies: multiple linear regression and artificial neural neworks. The unit cell edge length is expressed as a function of six independent variables: the effective ionic radii of the constituents (A, B and B′), the electronegativities of B and B′, and the oxidation state of B. In this analysis, 147 perovskites of the A22+BB′O6 type, having the cubic structure and belonging to the Fm3m space group, are included. They are divided in two sets; 98 compounds are used in the calibration set and 49 are used in the test set. Both models give consistent results and could be successfully use to predict the lattice cell parameter of new members of this series.
EN
This study concerns the application of artificial neural networks in oxidation kinetic analysis of ceramic nanocomposites. The oxidation of the Ti-Si-C ceramic nanocomposite in dry air was studied. The size of the nanoparticles was determined by scanning electron microscopy (SEM). The gaseous oxidation products were analysed by mass spectroscopy (MS) while the solid oxidation products by X-ray diffraction (XRD). The kinetic analysis of the oxidation was based on the Coats-Redfern equation. The kinetic models were identified for the consecutive stages and then the A and E parameters of the Arrhenius equations were evaluated. Artificial neural networks were used at each step of the kinetic calculations.
EN
This paper presents an evaluation of the annual cycle for 400 m hurdles using artificial neural networks. The analysis included 21 Polish national team hurdlers. In planning the annual cycle, 27 variables were used, where 5 variables describe the competitor and 22 variables represent the training loads. In the presented solution, the task of generating training loads for the assumed result were considered. The neural models were evaluated by cross-validation method. The smallest error was obtained for the radial basis function network with nine neurons in the hidden layer. The performed analysis shows that at each phase of training the structure of training loads is different.
Human Movement
|
2008
|
vol. 9
|
issue 2
93-102
EN
The aim of this study is to review the achievements of the mathematical modeling of muscles force contribution during walking. In order to determine the contributions of individual muscles to the net force or net muscle torque at a given joint, the external forces acting on lower extremity joints during gait ought to be identified. The solution of this problem, called in biomechanics the inverse dynamics, is now regarded as a classical method of movement modelling. In the hypothesis put forward in this paper, it is considered if the artificial neural network method could be applied to the muscle contraction prediction during gait analysis in normal and disabled subjects. Artificial neural network (ANN) is an artificial intelligence method used in mathematical modelling and its applications in diverse areas, especially in biology and medicine, are steadily progressing. The achievements and possibilities of ANN in biomechanics were presented previously by others authors. For example, Liu and Lockhart [13] attempted at creating a network capable of reproducing muscle forces during gait from EMG signals recorded in working muscles. The objective of our study was to make use of the experience gained in the construction of ANN and to apply advanced mathematical procedures to identical experimental conditions of gaint analysis.
8
Content available remote

Coronary Artery Diagnosis Aided by Neural Network

88%
EN
Coronary artery disease is due to atheromatous narrowing and subsequent occlusion of the coronary vessel. Application of optimised feed forward multi-layer back propagation neural network (MLBP) for detection of narrowing in coronary artery vessels is presented in this paper. The research was performed using 580 data records from traditional ECG exercise test confirmed by coronary arteriography results. Each record of training database included description of the state of a patient providing input data for the neural network. Level and slope of ST segment of a 12 lead ECG signal recorded at rest and after effort (48 floating point values) was the main component of input data for neural network was. Coronary arteriography results (verified the existence or absence of more than 50% stenosis of the particular coronary vessels) were used as a correct neural network training output pattern. More than 96% of cases were correctly recognised by especially optimised and a thoroughly verified neural network. Leave one out method was used for neural network verification so 580 data records could be used for training as well as for verification of neural network.
first rewind previous Page / 2 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.