Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 7

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  alkaline phosphatase
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
In adult life, proper bone metabolism requires efficient regulation of bone formation and resorption processes. Bone turnover markers allow for assessing the rate of bone formation and resorption processes. In menopausal period, female patients experience gradual reduction in blood estradiol levels. The deficit of estrogens leads to enhanced osteoclastogenesis and bone resorption. Alkaline phosphatase (ALP) is a membranebound enzyme that stimulates the osteoblast activity and bone mineralization. It is synthesized by osteoblasts and incorporated into the newly formed bone tissue. The produced enzyme stimulates the osteoblast activity and bone mineralization. The goal of this study is to determine the effect of hormone replacement therapy in postmenopausal women on the expression of alkaline phosphatase gene (ALPL) within the mucosal epithelium of the cheek and in peripheral blood lymphocytes. The studies show that hormone replacement therapy has no significant effect on the increase in ALPL expression within the mucosal epithelium of the cheek. Only in women having undergone ovarectomy (OV), the epithelial ALPL expression level was higher than in the remaining groups.
EN
Introducing collagen, which is basic ingredient of bone tissue, into the structure of chitosan gels which are formed at the physiological body temperature, is aimed at creating the so-called biomimetic structures, i.e. close in their composition to the natural composition of bone tissue. Within the research the influence of collagen on structural properties of thermosensitive chitosan gels and the influence of ALP on structural properties of chitosan and chitosan-collagen gels was determined.
EN
Several mammalian enzymes are anchored to the outer surface of the plasma membrane by a covalently attached glycosylphosphatidylinositol (GPI) structure. These include acetylcholinesterase, alkaline phosphatase (AP) and 5'-nucleotidase among other enzymes. Recently, it has been reported that these membrane enzymes can be released into the serum by the GPI-dependent phospholipase D under various medical disturbances such as cancer and/or by chemical and physical manipulation of the biological systems. Treatment of MCF-7 cells with two consecutive effective concentrations of 3-hydrogenkwadaphnin (3-HK, 3 nM) for 48 h enhanced membrane AP activity by almost 330% along with a 40% reduction in the AP activity of the cell culture medium. In addition, our data indicate that 3-HK is capable of inducing mainly the tissue-nonspecific alkaline phosphatase (TNAP) isoenzyme, along with enhancing its thermostability. These findings, besides establishing a correlation between the antiproliferative activity of 3-HK and the extent of plasma membrane AP activity, might assist in the development of new diagnostic tools for following cancer medical treatments.
EN
In this review the roles of specific proteins during the first step of mineralization and nucleation are discussed. Mineralization is initiated inside the extracellular organelles-matrix vesicles (MVs). MVs, containing relatively high concentrations of Ca2+ and inorganic phosphate (Pgi), create an optimal environment to induce the formation of hydroxyapatite (HA). Special attention is given to two families of proteins present in MVs, annexins (AnxAs) and tissue-nonspecific alkaline phosphatases (TNAPs). Both families participate in the formation of HA crystals. AnxAs are Ca2+- and lipid-binding proteins, which are involved in Ca2+ homeostasis in bone cells and in extracellular MVs. AnxAs form calcium ion channels within the membrane of MVs. Although the mechanisms of ion channel formation by AnxAs are not well understood, evidence is provided that acidic pH or GTP contribute to this process. Furthermore, low molecular mass ligands, as vitamin A derivatives, can modulate the activity of MVs by interacting with AnxAs and affecting their expression. AnxAs and other anionic proteins are also involved in the crystal nucleation. The second family of proteins, TNAPs, is associated with Pi homeostasis, and can hydrolyse a variety of phosphate compounds. ATP is released in the extracellular matrix, where it can be hydrolyzed by TNAPs, ATP hydrolases and nucleoside triphosphate (NTP) pyrophosphohydrolases. However, TNAP is probably not responsible for ATP-dependent Ca2+/phosphate complex formation. It can hydrolyse pyrophosphate (PPi), a known inhibitor of HA formation and a byproduct of NTP pyrophosphohydrolases. In this respect, antagonistic activities of TNAPs and NTP pyrophosphohydrolases can regulate the mineralization process.
EN
A new method based on combined atomic force microscopy (AFM) and fluorescence microscopy observations, is proposed to visualize the insertion of glycosylphosphatidyl inositol (GPI) anchored alkaline phosphatase from buffer solutions into supported phospholipid bilayers. The technique involves the use of 27 nm diameter fluorescent latex beads covalently coupled to the amine groups of proteins. Fluorescence microscopy allows the estimation of the relative protein coverage into the membrane and also introduces a height amplification for the detection of protein/bead complexes with the AFM. The coupling of the beads with the amine groups is not specific; this new and simple approach opens up new ways to investigate proteins into supported membrane systems.
EN
Lansoprazole, a known H/K+-ATPase inhibitor, is currently used as a therapeutical option for the initial treatment of gastroesophageal reflux disease. Recently, lansoprazole has been found to be an inhibitor of cytosolic PHOSPHO1 (a phosphatase which hydrolyses phosphocholine and phosphoethanolamine), providing a possible therapeutical target to cure pathological mineralization. Since PHOSPHO1 is present inside matrix vesicles, we tested the effect of lansoprazole on matrix vesicles containing several key enzymes for the mineralization process including tissue-nonspecific alkaline phosphatase. We found that lansoprazole can inhibit in an uncompetitive manner tissue-nonspecific alkaline phosphatase. A Ki value of 1.74 ± 0.12 mM has been determined for the inhibition of tissue-nonspecific alkaline phosphatase by lansoprazole. Lansoprazole, currently used for treating gastroesophageal disease, by inhibiting PHOSPHO1 and tissue-nonspecific alkaline phosphatase could prevent hydroxyapatite-deposition disease and could serve as an adjunct treatment for osteoarthritis.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.