Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  alignment and orientation
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
Open Physics
|
2011
|
vol. 9
|
issue 5
1221-1227
EN
Quasiclassical trajectory method for the title reaction He +H2+ → HeH+ + H was carried out on the potential energy surface which was revised by Aquilanti et al. [Chem. Phys. Lett. 469, 26 (2009)]. The initial vibrational quantum number of reactant was set as v=1, v=2 and v=3. Stereodynamics information of the reaction was obtained, such as the distributions of product angular momentum P(θ r), P(ϕ r),p(ϕ r, θ r) and the two commonly used polarization-dependent differential cross sections (PDDCSs) (2π/σ)(dσ 00/dω t) and (2π/σ)(dσ 20/dω t), to get the alignment and orientation of product molecules. The results show that the influence of both the collision energy and vibrational quantum number (v) to the reaction are highly sensitive.
Open Physics
|
2012
|
vol. 10
|
issue 2
253-270
EN
In this review, some benchmark works by Han and coworkers on the stereodynamics of typical chemical reactions, triatomic reactions H + D2, Cl + H2 and O + H2 and polyatomic reaction Cl+CH4/CD4, are presented by using the quasi-classical, quantum and mixed quantum-classical methods. The product alignment and orientation in these A+BC model reactions are discussed in detail. We have also compared our theoretical results with experimental measurements and demonstrated that our theoretical results are in good agreement with the experimental results. Quasi-classical trajectory (QCT) method ignores some quantum effects like the tunneling effect and zero-point energy. The quantum method will be very time-consuming. Moreover, the mixed quantum-classical method can take into account some quantum effects and hence is expected to be applicable to large systems and widely used in chemical stereodynamics studies.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.