Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  aggregate stability
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
A two-year field trial on maize (Zea mays L.) production was established to determine the influence of biochar, maize straw, and poultry manure on soil aggregate stability, aggregate size distribution, total organic carbon (TOC), and soil microbial biomass carbon (MBC). Seven treatments with four replications, namely CK, control; S, 12.5 Mg ha-1 straw; B1, 12.5 Mg ha-1 biochar; B2, 25 Mg ha-1 biochar; SB1, straw + 12.5 Mg ha-1 biochar; SB2, straw + 25 Mg ha-1 biochar; and M, 25 Mg ha-1 manure were tested at four soil depths (0–10, 10–20, 20–30, and 30–40 cm). Aggregates were grouped into large macro-aggregates (5–2 mm), small macro-aggregates (2–0.25 mm), micro-aggregates (0.25–0.053 mm) and silt + clay (<0.053 mm). Biochar, straw, and manure applications all had significant effects (p < 0.05) on aggregate stability, with B2 at 20 cm soil depth showing the greatest increase (62.1%). SB1 of small macro-aggregate fraction showed the highest aggregate proportion (50.59% ± 10.48) at the 20–30 cm soil depth. The highest TOC was observed in SB2  (40.9 g kg-1) of large macro-aggregate at 10–20 cm soil depth. Treatment effects on soil MBC was high, with B1 showing the greatest value (600.0 µg g-1) at the 20–30 cm soil depth. Our results showed that application of biochar, straw, and manure to soil increased aggregate stability, TOC as well as MBC.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.