Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 6

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  acrylamide
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Acrylamide (ACR) is a foodborne toxic agent, formed in food when processed at high temperature. This study aimed at evaluating the biochemical changes induced by ACR and the effect of Quercetin as a treatment against ACR induced cardiotoxicity in rats. Wistar rats of either sex (n=6) were divided into four groups as follows: normal control, an Acrylamide control group, Quercetin groups (25 and 50 mg/kg). Diagnostics characteristics were assessed daily, at the end of the study (4 weeks) evaluate hemodynamic parameters, the blood sample was collect for estimation of biochemical and rats were decapitated excised hearts, cleaned and weighed. Heart homogenate was used to determine antioxidants and oxidative levels, and histopathological evaluations were carried out to determine changes induced by Acrylamide. As compared control groups, ACR treated rats show altered significantly (P < 0.05) general characteristic and also elevated myocardial damage markers, altered hemodynamic, oxidative stress level, increased expression of inflammatory cytokines and induced histopathological changes. Treatment with Quercetin at 25 mg/kg and 50 mg/kg recouped the above changes significantly (P < 0.05), 50 mg/kg being more prominent. The present study has concluded that Quercetin protects against Acrylamide-induced cardiotoxicity.
Open Chemistry
|
2005
|
vol. 3
|
issue 4
705-720
EN
Chemical polymerization of acrylamide at room temperature was examined by using thioglycolic acid-cerium (IV) sulfate and thioglycolic acid-KMnO4 redox systems in acid aqueous medium. Water soluble polyacrylamides containing thioglycolic acid end groups were synthesized. The effects of the molar ratio of acrylamide to Ce(IV) nAAm/nCe(IV), the polymerization time, the temperature, the monomer concentration, the molar ratio of cerium (IV) sulfate to thioglycolic acid and the concentration of sulfuric acid on the yield and molecular weight of polymer were investigated. Lower molar ratios of acrylamide/Ce(IV) at constant monomer concentration resulted in an increase in the yield but a decrease in molecular weight of polymer. The increase of reaction temperature from 20 to 70°C resulted in a decrease in the yield but generally resulted in a constant value for the molecular weight of polymer. With increasing polymerization time, the yield and molecular weight of polymer did not change substantially. Ce(IV) and Mn(VII) ions are reduced to Ce(III) and Mn(II) ions respectively in the polymerization reaction. The existence of Ce(III) ion bound to polymer was investigated by UV-visible spectrophotometry and fluoresce measurements. The amount of Mn(II) incorporated into the polymer was determined using graphite furnace atomic absorption spectrometry. The mechanism of this phenomenon is discussed.
EN
The aim of this study was to determine the possibility of using gas chromatography to measurement of the acrylamide concentration in sewage sludge. Acrylamide, as a toxic substance, is not indifferent to human health, but it is used in the production of plastics, dyes, adhesives, cosmetics, mortar, as well as a coagulant for water treatment, wastewater or sewage sludge conditioning. Determination of acrylamide by gas chromatography was based on standard: EPA Method 8032A "Acrylamid by gas chromatography." It consists of a bromination reaction of the compound in the presence of dibromopropendial derivative, a triple extraction with the ethyl acetate, a concentration of the eluate sample up to the 1 ml volume, and an analysis by the gas chromatography using an electron capture detector (ECD). The acrylamide concentration of was calculated according to the formula presented in the mentioned standard. All samples were performed twice (the difference between the results was not greater than 10%), and the average value of the four samples was 17.64 µg/L−1. The presence of acrylamide in sewage sludge has been confirmed.
EN
Starch graft copolymers have been obtained via grafting of acrylic monomers i.e. acrylamide (AAm) and acrylic acid (AA) during the reactive extrusion processes. 2,2'-azobis (2-methylpropionamidine) dihydrochloride (AAPH) was used as a radical initiator and N'N-methylenebisacrylamide (MBA), mixture of pentaerythritol triacrylate and pentaerythritol tetraacrylate (trade name PETIA) and alkoxylated pentaerithritol acrylate (trade name Ebecryl 40) were applied as acrylic crosslinkers. The obtained materials were characterized by FTIR and their water sorption properties investigated using swelling (vol. %) and sorption (wt. %) tests. Sorption of water into these graft copolymer samples reached values of ca. 6-13 g of water per g of dry materials. It was also found that water sorption values were dependent on ratio of AAm and AA as well as on a type of the applied crosslinking agent.
Open Chemistry
|
2003
|
vol. 1
|
issue 3
291-304
EN
The kinetics of free-radical copolymerization and terpolymerization of acrylamide (AAm), N, N′-methylenebis(acrylamide) (MBA) and methacrylic acid (MA) in the inverse water/monomer/cyclohexane/Tween 85 miniemulsion was investigated. Polymerizable sterically-stable miniemulsions were formulated in cyclohexane as a continuous medium. Polymerizations are very fast and reach the final conversion within several minutes. The dependence of the polymerization rate vs. conversion is described by a curve with two nonstationary rate intervals. The maximum rate of polymerization slightly increases with increasing concentration of crosslinking monomer (MBA) and strongly decreases by the addition of MA. The rate of polymerization is inversely proportional to the 0.9th and 1.8th power of the particle concentration without and with MA, respectively. The number of polymer particles is inversely proportional to the 0.18th and 0.13th power of MBA concentration. The kinetic and colloidal parameters of the miniemulsion polymerization are discussed in terms of microemulsion polymerization model.
EN
INTRODUCTION: The thiol (SH) groups present in human blood plasma play an important role in the oxidative/antioxidative homeostasis of the organism. They are susceptible to the adverse actions of different exo- and endogenous factors. Chronic exposure to different xenobiotics, e.g. nitrogen-containing compounds commonly occurring in food, is especially important. The aim of this study was to investigate the effect of acrylamide (ACR) and sodium nitrates (SN) – (V) and (III) – on the plasma antioxidant properties, as reflected by changes in the SH group levels. MATERIAL AND METHODS: The concentration of SH groups was measured by Ellman’s method in blood plasma derived from 62 young people (in vivo model; time t0), and after 1 hour of blood plasma incubation with appropriate ACR and SN (III) concentrations (ex vivo model; time t1). The concentrations used corresponded with their daily intake (DIA – daily intake of acrylamide, and DIN – daily intake of sodium nitrates (V) and (III), respectively), estimated on the basis of a nutritional questionnaire. RESULTS: In both models, acrylamide and nitrates caused a significant decrease in SH group concentrations, but ACR induced stronger changes. The women consumed a greater amount of these nitrogen-containing compounds compared to the men, probably due to their different dietary habits. CONCLUSIONS: The obtained results indicate that these nitrogen-containing xenobiotics are important agents lowering antioxidative plasma potential, hence their intake should be controlled.
PL
WSTĘP: Grupy tiolowe (SH) obecne w osoczu krwi odgrywają ważną rolę w oksydacyjno-antyoksydacyjnej homeostazie organizmu. Są one podatne na niekorzystne działanie różnych czynników egzo- i endogennych. Szczególnie istotnym problemem jest długotrwałe narażenie na różne ksenobiotyki, np. związki zawierające azot, powszechnie występujące w żywności. Celem naszych badań była ocena wpływu akrylamidu (acrylamide – ACR) i azotanu sodu (sodium nitrate – SN) – (V) i (III) – na właściwości przeciwutleniające osocza poprzez pomiar stężenia grup SH. MATERIAŁ I METODY: Stężenie grup SH w osoczu uzyskanym od 62 młodych osób (model in vivo; czas t 0) oraz w próbkach poddanych godzinnej inkubacji z odpowiednim stężeniem ACR i SN (III) (model ex vivo; czas t1) mierzono metodą Ellmana. Stężenia ACR i SN (III) w modelu ex vivo odpowiadały ich dziennemu spożyciu (odpowiednio DIA – daily intake of acrylamide – i DIN – daily intake of sodium nitrates (V) i (III)), oszacowanemu na podstawie kwestionariusza żywieniowego. WYNIKI: W obu modelach akrylamid i azotany spowodowały znaczny spadek stężenia grup SH, ale ACR spowodował silniejsze zmiany. Kobiety spożywały większą ilość związków zawierających azot w porównaniu z mężczyznami, prawdopodobnie z powodu odmiennych nawyków żywieniowych. WNIOSKI: Uzyskane wyniki wskazują, że ksenobiotyki zawierające azot są ważnymi czynnikami obniżającymi potencjał antyoksydacyjny osocza, a ich spożycie powinno być kontrolowane.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.