Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  Western blotting
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
Acta Biochimica Polonica
|
2003
|
vol. 50
|
issue 4
1057-1064
EN
The presence of surfactant proteins was investigated in the human organ of Corti, Eustachian tube and kidney tissues. It has previously been shown that lamellar bodies are present in hairy cells of organ of Corti, in the cytoplasm of secretory and lumen of tubal glands of Eustachian tube and kidney renal basement membrane. No evidence for the presence of surfactant proteins in the organ of Corti and kidney has been presented until now. The aim of this study was to find out if surfactant proteins were expressed in other epithelia such as organ of Corti, Eustachian tube and kidney. Surfactant proteins were identified using one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blotting. On one-dimensional Western blots, bands for surfactant protein A in human Eustachian tube (SP-A, 34 kDa) and in kidney extracts, and for surfactant protein D (SP-D, 43 kDa) in Eustachian tube and in kidney extracts (SP-D, 86 kDa), and for surfactant protein B (SP-B, 8 kDa) in human Eustachian tubeand organ of Corti extracts were detected. Bands corresponded to monomeric forms of lung surfactant proteins. These results indicate the presence of SP-A and SP-D in kidney epithelium, SP-A, SP-B and SP-D in Eustachian tube and SP-B in the organ of Corti.
EN
All organisms are exposed to numerous stress factors, which include harmful xenobiotics. The diversity of these compounds is enormous, thus in the course of evolution diverse biological defense mechanisms at various levels of organization have developed. One of them engages an evolutionarily conserved family of transporters from the ABC superfamily, found in most species - from bacteria to humans. An important example of such a transporter is the breast cancer resistance protein (BCRP/ABCG2), a typical integral membrane protein. It plays a key role in the absorption, distribution and elimination of a wide variety of xenobiotics, including drugs used in chemotherapy, and is involved in multidrug resistance. It also protects against phototoxic chlorophyll derivatives of dietary origin. BCRP is a hemitransporter which consists of one transmembrane domain, made of six alpha-helices forming a characteristic pore structure, and one ATP-binding domain, which provides the energy from ATP hydrolysis, required for active transport of the substrates. The isolation of BCRP is still not an easy task, because its insolubility in water and the presence of membrane rafts pose serious methodological and technical challenges during the purification. The aim of this study was to optimize the methods for detection and isolation of BCRP-enriched fractions obtained from animal tissue samples. In this report we describe an optimization of isolation of a BCRP-enriched membrane fraction, which is suitable for further protein quantitative and qualitative analysis using the molecular biology tools.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.