Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 7

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  Thermal decomposition
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
Open Chemistry
|
2013
|
vol. 11
|
issue 7
1042-1054
EN
In the current work, iron oxide magnetic nanoparticles (MNP’s) were synthesized by thermal decomposition of Fe(acac)3-(iron acetylacetonate) compounds in high-boiling organic solvents containing stabilizing surfactants and examined as possible agents for magnetic hyperthermia treatment, according to their structural, magnetic and heating properties. Three different cancer cell lines (DA3, MCF-7 and HeLa cell lines) were used to assess the suitability of the MNP’s. The experimental results proved that the synthesized MNPs are non-toxic and the uptake efficiency was extremely good. Further, from in vitro hyperthermia results, very fast thermal response was observed (reaching hyperthermia levels in less than 200 s), which minimize the duration of the cell and human body exposure in a high frequency AC external magnetic field. [...]
EN
The present study concerns the electrochemical synthesis of basic copper carbonate nanoparticles by oxidation of metallic copper on the anode in an aqueous bicarbonate solution. This simple and one-step preparation can be considered as green synthesis. The scanning electron microscopy (SEM) analysis indicates that average particle size of the product is in the range of about 70 nm. On the other hand, basic copper carbonate micro-powder has been prepared, by mixing solutions of copper(II) sulphate and sodiu bicarbonate. The SEM analysis showed that the size of particles prepared in the same way is in the range of about 1 µm. In another part of this study, the thermal decomposition of micro and nanoparticles of copper carbonate produced by various methods was studied in air using TG-DTA techniques. The results of thermal study show that the decomposition of both samples occurs in single step. Also, the TG-DTA analysis of the nanoparticles indicates that the main thermal degradation occurs in the temperature range of 245–315°C. However, microparticles of Cu(OH)2 · CuCO3 decomposed endothermally in the temperature range of 230–330°C. [...]
EN
The thermal decomposition of the four nitrogen-rich salts of ammonia (NH4), aminoguanidine (AG), carbohydrazide (CHZ) and 5-aminotetrazo (ATZ) based on trinitrophloroglucinol (H3TNPG) was investigated using the differential scanning calorimetry (DSC), thermogravity (TG), and dynamic vacuum stability test (DVST). DSC and TG methods research the complete decomposition, while DVST method researches the very early reaction stage. The peak temperatures of DSC curves are consistent with the temperatures of maximum mass loss rates of TG curves. The apparent activation energies of these H3TNPG-based salts obtained by DSC and DVST have the same regularity, i.e., (ATZ)(H2TNPG)·2H2O 2O 4(H2TNPG) 2TNPG). The thermal stability order is (ATZ)(H2TNPG)·2H2O 2O 2TNPG) 4(H2TNPG), which was evaluated by DVST according to the evolved gas amount of thermal decomposition. DVST can monitor the real-time temperature and pressure changes caused by thermal decomposition, dehydration, phase transition and secondary reaction, and also evaluate the thermal stability and kinetics. [...]
Open Chemistry
|
2014
|
vol. 12
|
issue 6
672-677
EN
The thermal decomposition of five double-base propellants modified with RDX was studied by dynamic pressure thermal analysis to determine the effect of RDX content (20–60 wt.%) on performance. All have good stability. Both stability and activation energy increase as RDX increases from 20% to 50% then decrease; 50% RDX performs best. The decomposition mechanism is affected by RDX content and temperature. Increasing temperature induces autocatalysis and accelerates decomposition.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.