Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 7

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  Sample preparation
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
Open Chemistry
|
2012
|
vol. 10
|
issue 4
938-976
EN
Ultrasonic assistance is one of the great successes of modern analytical chemistry, which uses this energy for a variety of purposes in relation to sample preparation and development of methods for the analysis of numerous contaminants including organic and inorganic compounds. This review will attempt to provide an overview of more recent applications of ultrasound in different environmental and biological samples such as food, soil and water as well as a brief description of the theoretical understanding of this method. Also, the possibility of coupling ultrasound with other analytical techniques will be discussed. [...]
EN
In the last decade, several developments, particularly in the liquid chromatography and hyphenated techniques fields, have allowed researchers to reach analytical limits that are becoming very close to the single molecule level. Sample preparation, however, despite being a key step in the analytical methodology, did not track these developments and very few approaches able to cope with these stringent analytical requirements were developed. One such approach is microextraction by packed sorbent (MEPS), a sophisticated and miniaturized form of solid phase extraction that has reduced to the microliter scale every step of the sample extraction methodology including sample volume and solvent usage. Simultaneously, the amount of extraction phase used was also reduced and, more importantly, the sorbent is reusable dozens of times which significantly lowers the cost of analysis versus other solid-phase extraction approaches. In this review, we will update the state-of-the-art of the MEPS technique, focusing on the trends and applications reported since 2010 and future perspectives and developments that in our view will further improve the high-throughput potential and applications of this sample preparation methodology.
EN
Residues of pesticides, pharmaceutical and personal care products (PPCPs) are contaminants of world-wide concern. Consequently, there is a growing need to develop reliable analytical methods, which enable rapid, sensitive and selective determination of these pollutants in environmental samples, at trace levels. In this paper, a review of the liquid chromatography-tandem mass spectrometry (LC-MS/MS) based methods for the determination of pesticides and PPCPs in the environment is presented. Advanced aspects of current LC-MS/MS methodology, including sample preparation and matrix effects, are discussed.
EN
The miniaturization and improvement of sample preparation is a challenge that has been fulfilled up to a point in many fields of analytical chemistry. Particularly, the hyphenation of microextraction with advanced analytical techniques has allowed the monitoring of target analytes in a vast variety of environmental samples. Several benefits can be obtained when miniaturized techniques such as solid-phase microextraction (SPME) or liquid-phase microextraction (LPME) are applied, specifically, their easiness, rapidity and capability to separate and pre-concentrate target analytes with a negligible consumption of organic solvents. In spite of the great acceptance that these green sample preparation techniques have in environmental research, their full implementation has not been achieved or even attempted in some relevant environmental matrices. In this work, a critical review of the applications of LPME and SPME techniques to isolate and pre-concentrate traces of organic pollutants is provided. In addition, the influence of the environmental matrix on the effectiveness of LPME and SPME for isolating the target organic pollutants is addressed. Finally, unsolved issues that may hinder the application of these techniques for the extraction of dissolved organic matter from environmental samples and some suggestions for developing novel and less selective enrichment and isolation procedures for natural organic matter on the basis of SPME and LPME are included. [...]
EN
In this study, an in-cell extraction and clean-up approach, employing pressurized hot water extraction (PHWE) coupled to a molecularly imprinted polymer (MIP) is proposed. The selectivity of PHWE was improved through the use of a chlorophyll MIP (PHWE-MIP) for the determination of organochlorine pesticides residue levels in various edible and medicinal plants of the Okavango Delta, Botswana. The PHWE-MIP method achieved simultaneous extraction and clean-up. PHWE employed an optimal temperature of 260 °C, pressure of 90 bar and flow rate of 1 mL min-1 in 10 min for the extraction of the pesticides from plants while the MIP selectively overcame the interfering chlorophyll prior to analysis with gas chromatograph coupled to electron capture detector or mass spectrometer (GC-ECD/MS). The results obtained were compared to the QuEChERS Official Method 2007:01 for pesticides residue analysis. The proposed method seems to be nearly fully automated, environmental friendly, selective, simple and quick. Moreover, the recoveries of planar pesticides were improved (93-95%) with relative standard deviations (%RSD) of less than 10%.
EN
The pesticide residues in foods have received increasing attention as one of the most important food safety issues. Therefore, more strict regulations on the maximum residue limits (MRLs) for pesticides in foods have been established in many countries and health organizations, based on the sensitive and reliable analysis methods of pesticide residues. However, the analysis of pesticide residues is a continuing challenge mainly because of the small quantities of analytes as well as the large amounts of interfering substances which can be co-extracted with them, often leading to experimental errors and damage to the analytical instruments. Thus, extensive sample preparation is often required for the pesticide residue analysis for the effective extraction of the analytes and removal of the interferences. This paper focuses on reviewing the recent development in the sample preparation methods for the pesticide residue analysis in foods since 2006. The methods include: liquid-liquid extraction (LLE), supercritical-fluid extraction (SFE), pressurized-liquid extraction (PLE), microwave-assisted extraction (MAE), ultrasound-assisted extraction (UAE), gel permeation chromatography (GPC), solid-phase extraction (SPE), molecularly imprinted polymers (MIPs), matrix solid-phase dispersion (MSPD), solid-phase micro-extraction (SPME), QuEChERS, cloud point extraction (CPE) and liquid phase micro-extraction (LPME), etc. Particularly their advantages, disadvantages and future perspectives will be discussed.
Open Chemistry
|
2003
|
vol. 1
|
issue 2
108-120
EN
Mineralization procedures for blood and urine suitable for the determination of arsenic by Hydride Generation Atomic Absorption Spectrometry (HGAAS) are studied on model samples, and the results are utilized in biological monitoring investigations. The objective of this work is to obtain good total As recoveries for both matrices regardless of added As species (As(III), As(V), DMA, MMA, AsB, or AsC). Prior to the HGAAS analyses, preparation procedures were controlled under optimised conditions by graphite furnace atomic absorption spectrometry (GFAAS). Two preparation procedures for urine give As recoveries close to 100% by HGAAS: a) dry ashing at 420°C with Mg(NO3)2 on a hot plate, and b) microwave oven decomposition with (NH4)2S2O8. For blood samples, As recoveries by HGAAS range between 95 and 108% for all species when using dry ashing after a pretreatment of samples with HNO3 and H2O2 in a microwave oven. Wet digestion with (NH4)2S2O8 in a microwave oven gives recoveries very near 100% for Asinorg. and MMA. For other As species in spiked blood samples, recoveries of less than 20% As are found. Precision and detection limits obtained by both techniques are evaluated as well. For arsenic concentrations of 20 μg dm−3 or more in blood and urine, a chemical modifier is recommended for GFAAS analysis; it may or may not be proceeded by a mineralization step. For low As levels encountered in the unexposed population, the HGAAS technique provides reliable results only if a very complete mineralization procedure is used.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.