Metal nanoshells having a dielectric core with a thin gold layer are generating new interest due to the unique optical, electric and magnetic properties exhibited by the local field enhancement near the metal – dielectric core interface. These nanoshells possess strong, highly tunable local plasmon resonances with frequencies dependent upon the nanoshell shape and core material. These unique characteristics have applications in biosensing, optical communication and medicine. In this paper, we developed a theoretical, numerical and experimental approach based on a scanning near optical microscope to identify nanoshells inside mouse cells. Taking advantage of the characteristic near-infrared transparency window of many biological systems, i.e. the low light absorption coefficient of biological systems between 750−1100 nm, we were able to identify a 100−150 nm diameter barium titanate-gold nanoshell inside the h9c2 mouse cells.
Scanning Near-Field Optical Microscopy (SNOM) has developed during recent decades into a valuable tool to optically image the surface topology of materials with super-resolution. With aperture-based SNOM systems, the resolution scales with the size of the aperture, but also limits the sensitivity of the detection and thus the application for spectroscopic techniques like Raman SNOM. In this paper we report the extension of solid immersion lens (SIL) technology to Raman SNOM. The hemispherical SIL with a tip on the bottom acts as an apertureless dielectric nanoprobe for simultaneously acquiring topographic and spectroscopic information. The SIL is placed between the sample and the microscope objective of a confocal Raman microscope. The lateral resolution in the Raman mode is validated with a cross section of a semiconductor layer system and, at approximately 180 nm, is beyond the classical diffraction limit of Abbe.
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.