Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  Proteins
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Molecularly imprinted polymers (MIPs) are synthetic receptors with tailor-made recognition sites for the target molecules. Their high molecular recognition ability, good stability, easy preparation, and low cost make them highly promising substitutes for biological receptors. Recent years have witnessed rapidly increasing interest in the imprinting of biomacromolecules and especially proteins because of the great potential of these MIPs in such applications as proteome analysis, clinical diagnostics, and biomedicine. So far, some useful strategies have been developed for the imprinting of proteins and controlled radical polymerization techniques have proven highly versatile for such purpose. This mini-review describes recent developments in the controlled preparation of proteins-imprinted polymers via such advanced polymerization techniques.
EN
The building blocks of living cells, proteins are enormous collections of nitrogenous organic molecules that are polymers of the amino acids that animals must consume to grow and repair their tissues. ATP-dependent proteins known as chaperones serve as foldases (protein folding assistants), holdases (bind folding intermediates), and disaggregates (convert aberrant protein to monomers). Chaperones include, but are not limited to, DnaJ, DnaK, GrpE, and Hsp33. The majority of chaperones have a cleft containing the nucleotide-binding site that divides the ATPase domain into two subdomains. The features of the C-terminal domain depend on the kind of bound nucleotide. In the presence of ATP, peptides bind and dissociate quickly and with low affinity. In contrast, the affinity increases significantly while the rate of peptide binding reduces when neither ADP nor nucleotide are connected to the N-terminal domain. Hsp90 is a homodimer with a 60 n dissociation constant. In reaction to high temperature or other types of cellular stress that prevent protein folding, several chaperones turn on their activity. Neurodegenerative, Parkinson's, and polyQ diseases, among others, can all be treated with chaperones. This is possible when a protein prevents the accumulation of protein species with improper folding. The suppression of dangerous protein oligomers by clustering, illness response related to protein aggregation, and cancer maintenance are a few new functions for chaperones that are still being discovered.
EN
The conventional protocol for protein identification by electrospray ionization mass spectrometry (MS) is based on enzymatic digestion which renders peptides to be analyzed by liquid chromatography-MS and collision-induced dissociation (CID) multistage MS, in the so-called bottom-up approach. Though this method has brought a significant progress to the field, many limitations, among which, the low throughput and impossibility to characterize in detail posttranslational modifications in terms of site(s) and structure, were reported. Therefore, the research is presently focused on the development of procedures for efficient top-down fragmentation of intact protein ions. In this context, we developed here an approach combining fully automated chip-based-nanoelectrospray ionisation (nanoESI), performed on a NanoMate robot, with electron transfer dissociation (ETD) for peptide and top-down protein sequencing and identification. This advanced analytical platform, integrating robotics, microfluidics technology, ETD and alternate ETD/CID, was tested and found ideally suitable for structural investigation of peptides and modified/functionalized peptides as well as for top-down analysis of medium size proteins by tandem MS experiments of significantly increased throughput and sensitivity. The obtained results indicate that NanoMate-ETD and ETD/CID may represent a viable alternative to the current MS strategies, with potential to develop into a method of routine use for high throughput top-down proteomics.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.