Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 13

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  PIV
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
|
|
issue 3
277-289
EN
The whirlpool separator, used for hot trub separation, is prevalent in the brewing industry. It is a kind of a hydrocyclone inside of which a tea leaf effect occurs, which is sediment accumulation into a cone shape at the central part of the tank’s bottom. This manner of sediment accumulation is caused by the secondary flow occurring in the so-called Ekman boundary layer. This article is a summary of the research, which has been conducted for many years and involved observation, simulation and experimental research on the recognition and formation of the secondary flow accumulating the sediment cone. Secondary flows occurring in a whirlpool were identified through CFD simulation and PIV experiments, and are presented in this paper. Based on their location and direction, an attempt to determine their impact on the separation process taking place in the whirlpool has been made. The secondary flow identification methods proposed in this paper can be successfully applied in other solutions, e. g. structural ones, which involve rotational-flow-based separation.
EN
Niniejszy artykuł ma za zadanie przedstawienie stanowiska badawczego zbudowa-nego w Instytucie Maszyn Przepływowych Politechniki Łódzkiej w celu analizy opo-ru aerodynamicznego obracającego się koła samochodowego. Głównym elementem stanowiska jest bieżnia składająca się z bezszwowo łączonego pasa, który został roz-ciągnięty między dwoma rolkami. Napędzanie pasa oraz sterowanie jego prędkością uzyskano dzięki zastosowaniu silnika elektrycznego wraz z falownikiem. Prędkość jest monitorowana przy użyciu dwóch czujników laserowych. Odpowiednią pozycję testowanego modelu osiągnięto dzięki zastosowaniu ramienia pomiarowego zapew-niającego stabilizację koła. Stanowisko zostało umieszczone w tunelu aerodynamicz-nym oraz zastosowane do badań mających na celu analizę przepływu powietrza wo-kół obracającego się koła. W tym celu zostało ono wyposażone w zestaw kamer oraz laser służące do wizualizacji przepływu metodą PIV.
EN
The aim of the project was to collect experimental data regarding local distributions of fluid velocity and inert tracer concentration in a tank reactor with turbulent flow. The experiments were performed in a microscale in a region of tracer fluid injection. The results of experiments can be used for direct validation of currently developed CFD models, particularly for time-dependent mixing models used in LES.
|
|
issue 2
251-262
EN
Simulations of turbulent mixing in two types of jet mixers were carried out using two CFD models, large eddy simulation and κ-ε model. Modelling approaches were compared with experimental data obtained by the application of particle image velocimetry and planar laser-induced fluorescence methods. Measured local microstructures of fluid velocity and inert tracer concentration can be used for direct validation of numerical simulations. Presented results show that for higher tested values of jet Reynolds number both models are in good agreement with the experiments. Differences between models were observed for lower Reynolds numbers when the effects of large scale inhomogeneity are important.
EN
In this experimental study, a flow through a two-dimensional channel partially containing porous media is investigated. A two-layer structure comprising of a saturated porous layer with an overlaying fluid flow layer in a rectangular horizontal channel is designed for the experiments. Flow characteristics at the interface between clear fluid and porous layer are investigated. The porous layer consists of cylindrical rod bundle placed horizontally on the side walls of the channel in arranged square arrays. In the experiments, water white oil is used as the working fluid to match the refractive index of the cylindrical rods made of Plexiglas. Visualizations and measurements have been acquired by digital particle image velocimetry system for the velocity profiles which help us to evaluate the interface velocity and slip coefficient at the interface region. The measurement of interface velocity profile is repeated for circular, square, and 45^{°} rotated square cylindrical rods to understand the effects of the structure of the interface region. It has been observed that dimensionless slip or interface velocity depends significantly on the surface structure at the interface region when cylindrical rods each with circular, square, and 45^{°} rotated square cross-sections are used as porous medium. The volumetric flow rate can be changed according to the cross-sections of cylindrical rods. The permeability for the different arrangements of cylindrical rods is computed by an analytical study. The dimensionless slip velocity, slip coefficient, particle image velocimetry images, experimental and numerical velocity vector maps, and velocity profiles at the interface are presented.
EN
The velocity field around the standard Rushton turbine was investigated by the Laser Doppler Anemometry (LDA) and Particle Image Velocimetry (PIV) measurements. The mean ensembleaveraged velocity profiles and root mean square values of fluctuations were evaluated at two different regions. The first one was in the discharge stream in the radial direction from the impeller where the radial flow is dominant and it is commonly modelled as a swirling turbulent jet. The validity range of the turbulent jet model was studied. The second evaluated region is under the impeller where flow seems to be at first sight rather rigorous but obtained results show nonnegligible values of fluctuation velocity.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.