Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  PATCH CLAMP
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Problems of application of microelectrophysiological techniques in neurobiology are addressed. Authors focused on five basic recording techniques: micro-EEG, multi unit activity, single unit activity, intracellular recording and patch clamp techniques.
EN
The sympathetic nervous system evokes complex effects at multiple target organs in response to external, internal as well as mental stimuli. This output involves an interplay between the actions of a number of transmitters and modulators and a the postsynaptic and presynaptic sites of the autonomic ganglia and the sympathetic preganglionic neurons (SPNs). This review concerns particularly the SPNs of the cat and neonatal rat, studied by means of electrophysiological and immunohistochemical methods. Four types of responses may be elicited, the fast EPSP and IPSP, and their currents and the slow ESPSPs and IPSPs, and their currents. Glutamate and glycine appear to mediate the fast excitatory and inhibitory responses, respectively; peptides and amines seem to be responsible for generating the slow excitatory response, while the slow inhibitory response, found so far only in the cat, appears to be mediated by norepinephrine. Finally, glutamate, enkephalin and GABA, but not glycine attenuate the release of the inhibitory and excitatory transmitters from the nerve terminals abutting on the SPNs. The supraspinal efferent and afferent projections which may release the transmitters and modulators in question are discussed, as well the mechanisms that ensure appropriate programming and moment-to-moment regulation of the autonomic output.
EN
This review focuses on the influence of well-known intracellular second messengers on the activity of potassium channels expressed in human T lymphocytes. Basic biophysical properties of the channels are briefly presented. Available data on the regulatory role of intracellular calcium and cyclic AMP is reviewed. Finally, a possible influence of lipid compounds, especially high-density lipoproteins, lysophospholipids and sphingolipids, on the expression and activity of potassium channels in human T lymphocytes is discussed.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.