Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 6

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  Morasko
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
The paper presents results of bathymetric measurements performed on three crater lakes located in the “Meteoryt Morasko” reserve in west Poland. The maximum depth of the largest of the analysed lakes (1695 m2) was determined to amount to 2.6 m. The parameters of the lake (surface area, depth, etc.) are largely determined by a ditch dug through the crater in the north-western part of the lake, affecting the maximum water volume accumulated in the lake.
EN
Iron meteorites are the only ones to be linked with terrestrial impact craters. As studies show, over half of all iron meteorites shows signs of being shocked some time in their history to pressures over 130 kb. This paper is a short review of main shock metamorphism features in iron meteorites. Mechanisms leading to forming shock metamorphism features are described and examples of application of shock metamorphism studies are given.
EN
Sixteen specimens of the Morasko, one specimen of Seeläsgen and one specimen of Jankowo Dolne irons were analyzed with INAA to determine contents of 14 siderophile elements. The samples selected for analyses have their structures described and the presence or absence of cohenite checked. For preliminary interpretation, we have chosen elements determined with highest accuracy: Co, Ni, Ga, As, Ir and Au. The results are shown in tables and diagrams. It has been found that there are no significant differences in composition between fragments with and without cohenite. The observed low contents if iridium are not accompanied by lower contents of elements showing similar behavior during crystallization: platinum and tungsten, which suggests that fractional crystallization was not the reason of lower iridium content. Similar concentrations of elements have been found in all the Morasko specimens, and in the Seeläsgen and Jankowo Dolne irons, which suggests that all these meteorites come from one iron shower.
EN
The history, how the Mössbauer studies of meteorites began in Poland, was already described in our “Meteorites Odyssey… 20 years have passed”. One late afternoon (it was probably Spring 1995) I [Jolanta Gałązka-Friedman] was sitting in the Nonna Bakun’s office (at Banacha street) and we were talking about planet Mars. Suddenly Mr. Marian Stępniewski jumped to our room saying: We have a new Polish meteorite. It is called Baszkówka. Do you have any suggestion, how could we study this meteorite? Mössbauer spectroscopy – we both answered at the same time. And this is how it started, and it has been continued for the next quarter of a century. The first results of the Mössbauer studies of the Baszkówka meteorite were presented at the ISIAME conference in Johannesburg in 1996. In this paper we present the most important problems related to meteorites, which were investigated by us using Mössbauer spectroscopy. We will, however, show almost no formulas. We will try to explain everything by a method based on plots of Mössbauer spectra. We will try not to boast too much regarding our successes, but to explain also the problems that we were not able to resolve. While investigating the Baszkówka meteorite, we got most fascinated by troilite. We noticed that most of the laboratories determined the Mössbauer parameters of troilite incorrectly. They did not take into account the so-called theta angle, the value of which depends strongly on the number of vacancies and various additives. We thought that the theta angle may show us the parent body of the investigated meteorite. Unfortunately, this hypothesis turned up to be too difficult to defend. Then we studied Morasko meteorite and we discovered, by the comparison with Baszkówka meteorite Mössbauer spectra, and determined – up to now – not identified mineral phases present also in Morasko, such as pyrrhotite, daubréelite, taenite, tetrataenite, antitaenite and cohenite. In 2019 we published in MAPS a paper titled “Application of Mössbauer spectroscopy, multidimensional discriminant analysis and Mahalanobis distance for classification of equilibrated ordinary chondrites” (4M method), in which a new objective method for classification of ordinary chondrites is based on the knowledge of the Mössbauer spectra of the 4 main mineral phases present in the ordinary chondrites of H, L and LL type. Now we are working on the refinement of the 4M method enlarging our collaborative team by various foreign laboratories.
EN
Iron meteorites are meteorites whose main constituent is iron (Fe) and nickel (Ni), which occur in two forms of Fe-Ni minerals – kamacite and taenite. Since their composition makes them more resistant to shattering (crushing), and they are more challenging to ablate when passing through the atmosphere, they statistically fall in the form of larger lumps than stone or iron-stone meteorites. Their metallic structure and highly high weight make them easy to distinguish from ordinary rocks. The mass of all known iron meteorites is over 500 tons, which is ~89% of known meteorites, but falls of iron meteorites account for only 4.56% of all observed falls (wiki.meteoritica.pl). The ten largest meteorites in the world are iron meteorites! In the past, the term siderite was used to describe iron meteorites. The classification of iron meteorites is based on two criteria. The older method is based on the average nickel content and the crystal structure revealed on cut and etched surfaces, the so-called the Thomson-Widmanstätten patterns. In this division, we distinguish three groups: hexahedrites (4–6 wt.% Ni), the most popular octahedrites (6–12 wt.% Ni) and ataxites (>12 wt.% Ni). The second, more recent method of classifying iron meteorites is based on their chemical composition, in particular the content of trace elements such as germanium (Ge), gallium (Ga), platinum (Pt), arsenic (As), gold ( Au) and iridium (Ir). Another parameter that defines the groups of iron meteorites is their mineral composition. “Indicator” minerals are in the form of various compounds and multiple shapes and sizes: sulfides, phosphides, carbides, nitrides, and silicate inclusions. Trace element content versus nickel content reveals chemical clusters representing the different chemical groups of iron meteorites. Some of the iron meteorites come from the partially differentiated asteroid ruptured at the beginning of forming the iron core and the silicate-rich shell (these are groups IAB and IIE). The remaining meteorites from other groups come from the nuclei of minor differentiated asteroids, shattered in collisions shortly after formation.
PL
Meteoryty żelazne to grupa meteorytów, których głównym składnikiem jest żelazo (Fe) i nikiel (Ni), występujące w dwóch formach stopu Fe-Ni – kamacytu i taenitu. Ponieważ ich skład czyni je bardziej odpornymi na rozbicie (kruszenie) i trudniej ulegają procesowi ablacji przy przelocie przez atmosferę, więc statystycznie spadają one w postaci większych brył niż meteoryty kamienne lub żelazno-kamienne. Ich metaliczna budowa i wyjątkowo duża waga czynią z nich meteoryty łatwe do odróżnienia od zwykłych skał. Masa wszystkich znanych meteorytów żelaznych wynosi ponad 500 ton, co stanowi ~89% masy znanych meteorytów, ale spadki meteorytów żelaznych stanowią już tylko 4,56% wszystkich obserwowanych spadków (Wiki.Meteoritica.pl). Dziesięć największych okazów meteorytów na świecie to meteoryty żelazne! Dawniej na określenie meteorytów żelaznych używano określenia syderyt (siderite). Podziału meteorytów żelaznych dokonuje się według dwóch kryteriów. Starsza metoda bazuje na średniej zawartości niklu i na strukturze krystalicznej ujawniającej się na przeciętych i wytrawionych powierzchniach tzw. figury Thomsona-Widmanstättena. Przy takim podziale wyróżniamy trzy grupy: heksaedryty (hexahedrites) (śr. 4–6wt.% Ni), najpopularniejsze oktaedryty (octahedrites) (śr. 6–12wt.% Ni) oraz ataksyty (ataxites) (>12wt.% Ni). Druga, nowsza metoda klasyfikacji meteorytów żelaznych, opiera się na ich składzie chemicznym, w szczególności na zawartości pierwiastków śladowych (trace elements), takich jak german (Ge), gal (Ga), platyna (Pt), arsen (As), złoto (Au) i iryd (Ir). Drugim parametrem definiującym grupy meteorytów żelaznych jest ich skład mineralny. Minerałami „wskaźnikowymi” są występujące w formie różnych związków oraz w różnej formie i wielkości: siarczki, fosforki, węgliki, azotki i inkluzje krzemianowe. Zawartość pierwiastków śladowych versus zawartość niklu ujawnia chemiczne klastry (skupienia, clusters) reprezentujące różne chemiczne grupy meteorytów żelaznych. Część meteorytów żelaznych pochodzi z częściowo zdyferencjonowanych planetozymali rozerwanych na początku formowania żelaznego jądra i bogatej w krzemiany skorupy (to grupy IAB i IIE). Pozostałe meteoryty z innych grup pochodzą z jąder małych całkowicie zdyferencjonowanych planetozymali, rozbitych w zderzeniach, krótko po uformowaniu się.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.