Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 4

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  Molecular dynamics simulation
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
Open Physics
|
2010
|
vol. 8
|
issue 5
804-810
EN
New parameters of nearest-neighbor EAM (1N-EAM), n-th neighbor EAM (NN-EAM), and the second-moment approximation to the tight-binding (TB-SMA) potentials are obtained by fitting experimental data at different temperatures. In comparison with the available many-body potentials, our results suggest that the 1N-EAM potential with the new parameters is the best description of atomic interactions in studying the thermal expansion of noble metals. For mechanical properties, it is suggested that the elastic constants should be calculated in the experimental zero-stress states for all three potentials. Furthermore, for NNEAM and TB-SMA potentials, the calculated results approach the experimental data as the range of the atomic interaction increases from the first-neighbor to the sixth-neighbor distance.
Open Chemistry
|
2012
|
vol. 10
|
issue 4
1028-1033
EN
Diamond D5 is the name proposed by Diudea for hyper-diamonds having their rings mostly pentagonal. Within D5, in crystallographic terms: the mtn structure, known in clathrates of type II, several substructures can be defined. In the present work, the structural stability of such intermediates/fragments appearing in the construction/destruction of D5 net was investigated using molecular dynamics simulation. Calculations were performed using an empirical many-body potential energy function for hydrocarbons. It has been found that, at normal temperature, the hexagonal hyper-rings are more stable while at higher temperature, the pentagonal ones are relatively more resistant against heat treatment. [...]
3
Content available remote

A molecular dynamics study on iridium

100%
EN
In this study, molecular dynamics simulations are performed by using a modified form of Morse potential function in the framework of the Embedded Atom Method (EAM). Temperature-and pressure-dependent behaviours of bulk modulus, second-order elastic constants (SOEC), and the linear-thermal expansion coefficient is calculated and compared with the available experimental data. The melting temperature is estimated from 3 different plots. The obtained results are in agreement with the available experimental findings for iridium.
4
75%
EN
The literature devoted to numerical investigation of adsorption of heavy metal ions on carbon nanotubes is scarce. In this paper molecular dynamics is used to simulate the adsorption process and to investigate the effect of the infl uencing parameters on the rate of adsorption. The predictions of the molecular dynamics simulation show that the adsorption process is improved with increasing the temperature, pH of solution, the mass of nanotubes, and surface modifi cation of CNT using hydroxyl and carboxyl functional groups. The results predicted by the model are compared with the experimental results available in the literature; the close agreement validates the accuracy of the predictions. This study reveals that the water layers around the carbon nanotubes and the interaction energies play important roles in the adsorption process. The study also shows that electrostatic force controls the attraction of zinc ions on the nanotube sidewall.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.