Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  Hydrogen bond
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
Open Chemistry
|
2010
|
vol. 8
|
issue 5
1117-1126
EN
Ab initio calculations, including natural charge population and natural resonance theory analyses, have been carried out to study the two-way effects between hydrogen bonds (H-bonds) and the intramolecular resonance effect by using the H-bonded complexes of ring compounds containing the H2N-C=Y moiety (C=Y bond is contained in the six-membered or five-membered rings) with water as models. The amino groups in the four monomers of ring compounds (FAYs, Y represents the heavy atoms in the substituent groups, =CH, =N, =SiH, and =P, respectively) can all serve as H-bond donors (HD) and H-bond acceptors (HA) to form stable H-bonded complexes with water. The HD H-bond and resonance effect enhance each other (positive two-way effects) whereas the HA H-bond and resonance effect weaken each other (negative two-way effects). The resonance effect in FAY(1) (C=Y bond is contained in the six-membered rings) is weaker than that in formamide, and those in FAY(2) and FAY(3) (C=Y bonds are contained in the five-membered rings). The two-way effects between H-bond and resonance effect exist in the H-bonded complexes of ring compounds containing the H2N-C=Y moiety with water. [...]
EN
The formation of hydrogen bonds and the molecular dynamics for molecules (Z)-1-(2-hydroxy-5-methyl-3-nitrophenyl)ethanone oxime and (E)-2-hydroxy-5-methylacetophenone thiosemicarbazone, (E)-4-bromoacetophenone thiosemicarbazone have been investigated in solution using NMR. The results confirm the formation of different O-H…O type intramolecular hydrogen bonds in the oxime molecule. The rotational barrier energy and energy of intramolecular hydrogen bonds have been determined.
EN
In the present study, the effect of a conformational constraint introduced into the endomorphin-2 (Tyr-Pro-Phe-Phe-NH2, EM-2) structure was studied using computational analysis and radioligand binding assay. EM-2 was modified by connecting nitrogen atoms of both phenylalanine residues by a methylene bridge. The obtained analog did not bind to the µ- or δ-opioid receptors in the in vitro studies. The computational analysis of this analog showed twisted, type IV turns and the absence of canonical β-turns typical for the EM-2 structure, which can be explained by the lack of hydrogen bonds involving Phe4. Our results show that the introduction of chemical constraint in the EM-2 structure has a significant effect on opioid receptor affinity and in vitro bioactivity.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.