Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  Hall current
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
Open Physics
|
2010
|
vol. 8
|
issue 3
422-431
EN
The aim of this present paper is to construct exact solutions corresponding to the motion of magnetohydrodynamic (MHD) fluid in the presence of Hall current, due to cosine and sine oscillations of a rigid plate as well as those induced by an oscillating pressure gradient. A uniform magnetic field is applied transversely to the flow. By using Fourier sine transform steady state and transient solutions are presented. These solutions satisfy the governing equations and all associated initial and boundary conditions. The results for a hydrodynamic second grade fluid can be obtained as a limiting case when B 0 → 0 and for a Newtonian fluid when α 1 → 0.
Open Physics
|
2005
|
vol. 3
|
issue 4
484-507
EN
In the present study, the unsteady Hartmann flow with heat transfer of a dusty viscous incompressible electrically conducting fluid under the influence of an exponentially decreasing pressure gradient is studied without neglecting the ion slip. The parallel plates are assumed to be porous and subjected to a uniform suction from above and injection from below while the fluid is acted upon by an external uniform magnetic field applied perpendicular to the plates. The equations of motion are solved analytically to yield the velocity distributions for both the fluid and dust particles. The energy equations for both the fluid and dust particles including the viscous and Joule dissipation terms, are solved numerically using finite differences to get the temperature distributions.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.