Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 7

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  HETEROPTERA
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
Folia Biologica
|
1995
|
vol. 43
|
issue 1-2
55-59
EN
Six species from six genera of the Oxycareninae were investigated.Males of all examinated species have 2 elongate follicles in each of the paired testes and an unpaired branched mesadenial gland.Four of them hsve 14 autosomes in the set.Two other pecies have 12 autosomes, one autosomal pair being larger than the others.The last two genera are monotypic and have similar morphological characters.In all the examined species there is a pair of m-chromosomes, situated separately or as a pseudobivalent during mataphase 1 of meiosis, found in all the investigated cells near to the sex (XY) chromosomes.
|
2007
|
vol. 55
|
issue 3-4
133-141
EN
The morphology and ultrastructure of the metathoracic scent glands (MTG) of Eurygaster maura were studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Also, extracts of the volatile fraction of the MTG secretion from males and females were analyzed by capillary gas chromatography-mass spectrometry (GC-MS). In SEM investigations, MTG are composed of a reservoir and a pair of lateral glands connected to the reservoir by a duct. MTG are open in between the meso- and the metacoxae. These areas, called evaporation areas, are composed of mushroom-like elements. In TEM investigations, the reservoir walls contained two types of cells. Generally, a reservoir is lined by a single layer of epithelial cells, type I cells, which have numerous organelles. Type II cells are found only in a certain area of the reservoir wall. These cells have large secretory ducts lined by a cuticular intima layer. The lateral glands are lined by secretory cells and a secretory duct found in their cytoplasm. Nuclei of secretory cells are closed to the basal region of the cells and circular-shaped. In GC-MS investigations, the MTG exhibited a typical scutellerid composition. In general, (E)-2-hexanal, (E)-2-hexenyl acetate, n-tridecane, n-hexanoic acid, octadecanoic acid, and n-dodecane compounds were present, while diisooctyl acetate and 14-Beta-H-Pregna were detected only in the male extracts of Eurygaster maura.
|
|
vol. 51
|
issue 1-2
13-21
EN
The basic male karyotype of the six Nabis species (Heteroptera, Nabidae) is confirmed as being 2n=16+XY. The chromosomes are holokinetic while male meiosis is achiasmatic. The sex chromosomes undergo postreduction and in second metaphase show distance pairing, registered in all nabid species examined so far. Using C-banding technique for the first time in the family Nabidae, the heterochromatin was revealed on chromosomes of six species. The species showed different amount and distribution of C-heterochromatin. Only in Nabis (Dolichonabis) limbatus did the C-bands distribution make possible the identification of every chromosome pair in the karyotype. In other species, C-bands were found in some of the autosomes and the X, localized either interstitially or at telomeres. Only theYusually showed relative stability of the C-banding pattern. In four of six species, extra (B) chromosomes were observed and their behaviour in meiosis described.
EN
So far, only seven and five species of Dysdercus from the Old and New Worlds, respectively, have been cytogenetically analysed. They all have holokinetic chromosomes and a pre-reductional type of meiosis. In the present study the chromosome complement, male meiosis and nucleolar meiotic cycle of Dysdercus imitator were analysed. During male meiosis several cytogenetic features are remarkable, namely the presence of a long diffuse stage after pachytene, the finding of one or two ring bivalents per cell in almost all specimens, and the presence of several prenucleolar bodies lasting up to telophase II. The origin and function of these prenucleolar bodies could be related to a particular physiological cycle of the meiocytes.
EN
The karyotype and male meiosis of Macrolophus costalis Fieber (Insecta, Heteroptera, Miridae) were studied using C-banding, AgNOR-banding and DNA sequence specific fluorochrome staining. The chromosome formula of the species is 2n=28(24+X1X2X3Y). Male meiotic prophase is characterized by a prominent condensation stage. At this stage, two sex chromosomes, 'X' and Y are positively heteropycnotic and always appeared together, while in autosomal bivalents homologous chromosomes were aligned side by side along their entire length, that is, meiosis is achiasmatic. At metaphase I, 'X' and Y form a pseudobivalent and orient to the opposite poles. At early anaphase I, the 'X' chromosome disintegrates into three separate small chromosomes, X1, X2, and X3. Hence both the autosomes and sex chromosomes segregate reductionally in the first anaphase, and separate equationally in the second anaphase. This is the first evidence of sex chromosome pre-reduction in the family Miridae. Data on C-heterochromatin distribution and its composition in the chromosomes of this species are discussed.
EN
The karyotypes, sex chromosome systems, and male meiotic patterns in 13 species belonging to 10 genera of the family Tingidae were studied. Data on eleven species, one subgenus, and 5 genera are presented for the first time, and the chromosome formula of Acalypta parvula is revised. Karyotypes of all species included six pairs of autosomes. Most of the species displayed an XY sex chromosome system, in four species, belonging to genera of Acalypta and Kalama, the X0 system was found. Male meiosis is chiasmatic for autosomes. Sex chromosomes are achiasmatic and undergo pre-reductional meiosis. Using C-banding technique, for the first time constitutive heterochromatin was localized on chromosomes in all the species studied. The heterochromatin was found either in telomeres or in some species in interstitial locations, evidencing that a quite substantial redistribution of chromosome material within chromosomes might occur without fragmentations or fusions. In two species, a supernumerary (B) chromosome was found. In addition, the male reproductive system of four species was examined and the number of testicular follicles was determined as two per testis.
EN
Cimicomorpha), the first evidence for the tribe Arachnocorini (the subfamily Nabinae), with reference to the Trinidad endemic, Arachnocoris trinitatus Bergroth, is provided. This is an attempt to gain a better insight into the evolution, systematics and within-family relationships of the family Nabidae. The studies were conducted using a number of cytogenetic techniques. The male karyotype (chromosome number and size; sex chromosome system; NOR location; C-heterochromatin amount, distribution and characterization in terms of the presence of AT-rich and GC-rich DNA), and male meiosis with particular emphasis on the behavior of the sex chromosomes in metaphase II are described. Also investigated are the male and female internal reproductive organs with special reference to the number of follicles in a testis and the number of ovarioles in an ovary. A. trinitatus was found to display a number of characters differentiating it from all hitherto studied nabid species placed in the tribe Nabini of the subfamily Nabinae, and in the tribe Prostemmatini of the subfamily Prostemmatinae. Among these characters are chromosome number 2n = 12 (10 + XY), the lowest within the family, nucleolus organizer regions (NORs) situated on the autosomes rather than on the sex chromosomes as is the case in other nabid species, and testes composed of 3 follicles but not of 7 as in other nabids. All the data obtained suggest many transformations during the evolution of A. trinitatus.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.