Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 5

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  H5N1
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Broiler type chickens were immunized intramuscularly with a DNA vaccine encoding hemagglutinin (HA) from H5N1 avian influenza virus. The chickens were divided into four groups: control group which was not immunized, a group which obtained only one dose, and two groups which were immunized twice, one group with a boost two weeks after the priming and the other four weeks. Blood samples were collected at several time points and the dynamics of the humoral response to the vaccine was studied. High level of anti-HA antibodies was detected only in the last two groups, that is in chickens immunized according to the prime-boost strategy, regardless of the schedule. An additional interesting observation of this study was detection of the cross-reactivity of an anti-H5 HA positive serum with H5N2 and H1N1 viruses, suggesting that the DNA vaccine tested can induce antibodies of a broad specificity.
EN
The A/swan/Poland/305-135V08/2006 (H5N1-subtype) hemagglutinin (HA) gene was cloned and expressed in yeast Pichia pastoris (P. pastoris). The HA cDNA lacking the C-terminal transmembrane anchor-coding sequence was fused to an α-factor leader peptide and placed under control of the methanol-inducible P. pastoris alcohol oxidase 1 (AOX1) promoter. Two P. pastoris strains: SMD 1168 and KM 71 were used for protein expression. Recombinant HA protein was secreted into the culture medium reaching an approximately 15 mg/L (KM 71 strain). Fusion protein with a His6 tag was purified to homogeneity in one step affinity chromatography. SDS-PAGE and MS/MS analysis indicated that the protein is cleaved into HA1 and HA2 domains linked by a disulfide bond. Analysis of the N-linked glycans revealed that the overexpressed HA is fully glycosylated at the same sites as the native HA in the vaccine strain. Immunological activity of the hemagglutinin protein was tested in mice, where rHA elicited a high immune response.
EN
The H5N1 infection was diagnosed in 12 patients in Turkey and confirmed by the WHO. Of these 12 patients so far, 8 have been published. In this case, we are presenting a case of pneumonia that developed following avian influenza infection in Eskisehir. Our case is one of the 4 patients who were not reported previously.
4
Content available remote

The "H5N1 publication case" and its conclusions

88%
Acta Biochimica Polonica
|
2012
|
vol. 59
|
issue 3
441-443
EN
The request of the National Science Advisory Board for Biosecurity (NSABB) to the editors of the scientific journals SCIENCE and NATURE not to publish details on the modified H5N1-virus has surprisingly not caused a discussion on censorship within the scientific community (NSABB, 2012a, P.1). This may show that science generally acknowledges the necessity to cut out sensitive data from research results in publications that may serve as a manual for weapons of mass destruction. In this article the policy of the NSABB and the reaction of the scientific community is discussed, as well as the meaning of censorship in dual use research and how an appropriate organisation of future surveillance in sensitive science fields could be organised: To guarantee future undisturbed work in sensitive science fields, the establishment of an internationally organised frame for scientists dealing with dual-use-research is suggested.
EN
Influenza A virus infections are the major public health concern and cause significant morbidity and mortality each year worldwide. Vaccination is the main strategy of influenza epidemic prevention. However, seasonal vaccines induce strain-specific immunity and must be reformulated annually based on prediction of the strains that will circulate in the next season. Thus, it is essential to develop vaccines that would induce broad and persistent immunity to influenza viruses. Hemagglutinin is the major surface antigen of the influenza virus. Recent studies revealed the importance of HA stalk-specific antibodies in neutralization of different influenza virus strains. Therefore, it is important to design an immunogen that would focus the immune response on the HA stalk domain in order to elicit neutralizing antibodies. In the present study, we report characterization of a conserved truncated protein, potentially a universal influenza virus antigen from the H5N1 Highly Pathogenic Avian Influenza A virus strain. Our results indicate that exposure of the HA stalk domain containing conserved epitopes results in cross reactivity with different antibodies (against group 1 and 2 HAs). Additionally, we conclude that HA stalk domain contains not only conformational epitopes recognized by universal FI6 antibody, but also linear epitopes recognized by other antibodies.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.