Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 4

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  GENETIC DISTANCE
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
RAPD (random amplified polymorphic DNA) polymorphism was studied in 23 malting and non-malting spring barley cultivars included in the official list of Polish cultivated varieties. Twenty-four 10-mer primers were tested in each cultivar, giving altogether 149 amplification products, 45% of which were polymorphic. The number of polymorphic bands revealed by one primer ranged from 1 to 6, with an average of 2.8. Genetic distance for all pairs of compared varieties was estimated and a dendrogram was constructed using unweighted pair group method of arithmetic means. The genetic distance between cultivars ranged from 0.11 for cvs. Apex and Bryl to 0.62 for cvs. Orthega and Madonna. Of the seven malting cultivars only two (Brenda and Stratus) formed one group at D = 0.25. The genetic distance between cvs. Brenda and Scarlett, especially recommended for brewery, was equal to 0.34. The detected polymorphism appeared to be sufficient for assessing genetic distances between cultivars, but on the basis of this polymorphism groups of malting and non-malting cultivars were not clearly distinguished.
EN
In recent years, transposon insertion polymorphisms have been utilized as molecular markers, and a range of techniques tailored towards identification of insertion sites of various transposable elements have been developed. In the present paper we describe the application of a recently developed DcMaster transposon display system to analyse the genetic diversity of Polish breeding materials of carrot (Daucus carota) and to identify polymorphisms useful for hybrid seed purity testing. Using 3 sets of breeding materials (each consisting of the cytoplasmic male sterility stock, the maintainer, the pollinator, and the corresponding F1 hybrid), we identified 56 DcMTD markers. DcMaster insertion sites proved to be highly polymorphic in cultivated carrot, as 79% of all insertion sites differentiated between individual plants. Fourteen stock-specific DcMTD markers were further selected as potentially useful for hybrid seed purity testing.
EN
Breeding of oilseed rape hybrid varieties in Poland is based on CMS ogura hybrydization system. The marker assisted selection is used in selection of parental lines of F1 hybrids. The markers of alleles of restorer gene Rfo are the most important in breeding programs. Also, the investigations on genetic distance of hybrid parental lines using molecular markers are undertaken aiming at its application for preliminary selection of F1 combinations.
EN
The distinctness, uniformity and stability (DUS) requirements involve expensive, space- and time-consuming measurements of morphological traits. Moreover, for a majority of traits, interactions between genotype and environment complicate the evaluation. Molecular markers have a potential to facilitate this procedure, increase the reliability of decisions, and substantially save the time and space needed for experiments. We chose 25 varieties of pea (Pisum sativum L.) from the list of recommended varieties for cultivation in the Czech Republic, and made both a standard classification by 12 morphological descriptors and a classification by biochemical-molecular markers. Two isozyme systems, 10 microsatellite loci, 2 retrotransposons for multilocus inter-retrotransposon amplified polymorphism (IRAP), and 12 retrotransposon-based insertion polymorphism (RBIP) DNA markers were analysed. The main objective of the study was to examine the potential of each method for discrimination between pea varieties. The results demonstrate a high potential and resolving power of DNA-based methods. Superior in terms of high information content and discrimination power were SSR markers, owing to high allelic variation, which was the only biochemical-molecular method allowing clear identification of all varieties. Retrotransposon markers in RBIP format proved to be the most robust and easy to score method, while multilocus IRAP produced informative fingerprint already in a single analysis. Isozyme analysis offered a fast and less expensive alternative. The results showed that molecular identification could be used to assess distinctness and complement morphological assessment, especially in cases where the time frame plays an important role. Currently developed pea marker systems might serve also for germplasm management and genetic diversity studies.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.