Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 11

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  Fluorescence
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
The water-soluble sunscreen 2-phenylbenzimidazole-5-sulfonic acid (PBS) was quantified in a sun-care product and water samples by thin layer chromatography followed by densitometric scanning in fluorescence mode (cut-off filter 370 nm, wavelength of excitation - 300 nm). Normal phase TLC was performed on silica gel 60 as stationary phase. Mobile phase used was ethyl acetate-ethanol-water 70:35:30 (v/v/v). The limit of detection (LOD) was 0.0004 μg spot-1, and the limit of quantification (LOQ) was - 0.001 µg spot−1 without any sample pre-concentration. [...]
EN
In addition to the commonly observed single molecule fluorescence intensity fluctuations due to molecular reorientation dynamics, a perylene bisimide-calixarene compound (1) shows additional on-off fluctuations due to its ability to undergo intramolecular excited state electron transfer (PET). This quenching process is turned on rather sharply when a film of poly(vinylacetate) containing 1 is heated above its glass transition temperature (T g), which indicates that the electron transfer process depends on the availability of sufficient free volume. Spatial heterogeneities cause different individual molecules to reach the electron transfer regime at different temperatures, but these heterogeneities also fluctuate in time: in the matrix above T g molecules that are mostly nonfluorescent due to PET can become fluorescent again on timescales of seconds to minutes. The two different mechanisms for intensity fluctuation, rotation and PET, thus far only observed in compound 1, make it a unique probe for the dynamics of supercooled liquids.
Open Chemistry
|
2010
|
vol. 8
|
issue 3
674-686
EN
The ability of new chelate ligands, benzoxazol-5-yl-alanine derivatives substituted in position 2 by heteroaromatic substituent, to form complexes with selected metal ions in acetonitrile are studied by means of absorption and steady-state and time-resolved fluorescence spectroscopy. Among the ligands studied, only azaaromatic derivatives form stable complexes with transition metal ions in the ground state. Their absorption bands are bathochromically shifted enabling to use those ligands as ratiometric sensors. The fluorescence of each ligand is quenched by metal ions, however, in the presence of Cd(II) and Zn(II) ions a new red shifted emission band is observed. [...]
EN
Benzimidazolium trichlorocuprate(II) undergoes a redox reaction in the solid state at elevated temperature (∼240°C) to produce the cyclic trimer of benzimidazole and cuprous chloride. The trimer has been characterized by IR, NMR, and Mass spectroscopy. It has also been synthesized in lower yield by heating the mixtures of CuCl2 and benzimidazole in different ratios or heating other compounds of CuCl2 and benzimidazole. The absorption, emission, and excitation spectra of the trimer in two different solvents (TFA and DMSO) and a comparison of these results with those of benzimidazole are presented here.
Open Chemistry
|
2009
|
vol. 7
|
issue 1
96-104
EN
The mechanism of interaction of hypoglycemic drugs, glimepiride and glipizide with human serum albumin (HSA) has been studied using fluorescence spectroscopy. The results are discussed in terms of the binding parameters, thermodynamics of the binding process, nature of forces involved in the interaction, identification of drug binding site on serum albumin and the fluorescence quenching mechanism involved. The association constants were of the order of 105 and glipizide was found to have much higher affinity for HSA than glimepiride at all temperatures. Thermodynamic parameters for the binding suggested that hydrophobic interactions are primarily involved in the binding of these drugs to HSA. However, glimepiride and glipizide appear to cause temperature-dependent conformational changes in the albumin molecule and, therefore, the nature of interaction varied with temperature. Glimepiride and glipizide bind to both site I and site II on HSA, but the primary interaction occurs at site II. The binding region in site II is different for the two drugs. Stern-Volmer analysis of quenching data indicated that tryptophan residues of HSA are not fully accessible to the drugs and a predominantly dynamic quenching mechanism is involved in the binding. Results can provide useful insight into prediction of competitive displacement of these drugs by other co-administered drugs and excipients, resulting in serious fluctuations of the blood glucose levels in diabetic patients. [...]
EN
Complexes ZnL2 with novel fluorinated benzazines as tridentate ligands (HL = 6,7-difluoroquinoxalinand 6,7-difluoroquinolincarboxalidin-2-aminophenol) have been prepared. The photophisical properties of the ligands and the complexes has been studied.
Open Chemistry
|
2011
|
vol. 9
|
issue 6
1062-1070
EN
This paper describes the preparation and characterization of poly(ethyl cyanoacrylate) colloidal particles loaded with the organic fluorophore Rhodamine 6G. We studied the physicochemical properties of the colloidal particles: morphology, size-distribution, ζ-potential, fluorescent properties and photobleaching upon UV-light illumination. The properties of the obtained colloidal particles, as well as the dye loading efficiency, were found to depend on the concentrations of ethyl cyanoacrylate monomer and Rhodamine 6G in the polymerization medium. The fluorophore release from the colloidal particles in aqueous buffer is also studied. [...]
EN
Two new low-molecular weight compounds - (Z)-4-(4-(dimethylamino)benzylidene)-1-(9-ethyl-9H-carbazol-3-yl)-2-phenyl-1H-imidazol-5(4H)-one and 2-(6-hydroxyhexyl)-6-(pyrrolidin-1-yl)-1H-benzo[de]isoquinoline-1,3(2H)-dione) - with possible application in organic light-emitting devices were synthesized. Their photophysical properties in solution and in polymer films were investigated. The determined relative fluorescence quantum yields in solution for both compounds were 0.003 and 0.51, while those in poly(methyl methacrylate) films were around 0.10 and 1.0, respectively. For 1H-imidazol-5(4H)-one derivative, single-layer organic displays with one emitting layer were prepared by spin-coating technology. The applied voltage was 40 V (AC) with 1–3 KHz frequency. The emission maximum of the experimental AC display structures was at 600–630 nm. For displays with 2-(6-hydroxyhexyl)-6-(pyrrolidin-1-yl)-1H-benzo[de]isoquinoline-1,3(2H)-dione) the applied voltage was 60 V (AC) with 6-9 KHz frequency, but its future success will require more appropriate binding polymers. Based on the obtained experimental results, it is concluded that the investigated compounds could be applied for preparation of color electroluminescent structures. [...]
EN
The synthesis and photophysical properties of several 6,6″ symmetrically substituted 4′-aryl-2,2′:6′,2″-terpyridine derivatives are reported herein. The UV-Vis spectra in acetonitrile as well as in dichloromethane show two intense bands in the UV areas 252–262 nm and 275–290 nm while the fluorescence emission spectra are only slightly influenced by chemical derivatization.
Open Chemistry
|
2010
|
vol. 8
|
issue 4
946-952
EN
In this study, spectroscopic investigation of chiral and achiral room temperature ionic liquids is achieved. New ionic liquids were prepared via metathesis, accomplished by the reaction of either L-phenylalanine ethyl ester hydrochloride, chlorpromazine hydrochloride or 1,10-Phenanthroline monohydrate hydrochloride with lithium bis(trifluoromethane) sulfonamide in water. The resulting ionic liquids were produced in high yield and purity. The results obtained by use of 1H NMR and IR experiments were in very good agreement with the chemical structures of the synthesized ionic liquids. In addition, the results of thermal gravimetric analysis suggested that these ionic liquids have good thermal stability. UV-Vis and fluorescence spectroscopy measurements indicated that these ionic liquids are strongly optically absorbent and fluorescent. Lastly, time-based fluorescence steady-state measurements demonstrated the high photostability of these ionic liquids. [...]
|
|
issue 10
1056-1066
EN
Two monomers of (D/L), (+/−)-N-methacryloyloxyethyl-N′-2-hydroxybutyl(urea) methacrylate (D/L-MABU) type were prepared and further polymerized through free radical polymerization with optically active monomers containing phenylalanine sequences such as N-acryloyl-(D/L), (−/+)-phenylalanine (A-D/L-Phe). The resulting copolymers, i.e., poly[N-acryloyl-(D/L), (−/+)-phenylalanine-co-(D/L), (+/−)-N-methacryloyloxyethyl-N′-2-hydroxybutyl(urea)], A-D/L-Phe-co-D/L-MABU, were characterized by FT-IR, 1D/2D NMR (1H and 13C), UV-vis, and circular dichroism (CD) spectroscopies, differential scanning calorimetry (DSC), and gel permeation chromatography (GPC). The copolymers obtained with a molar fraction of 0.76: 0.24 / 0.64: 0.36 monomer units had optical rotation values of −25° and +15°, respectively. Upon chemical modification of the phenylalanine-based copolymers with fluorescein-isothiocyanate, new fluorescent copolyacrylates (A-D/L-Phe-co-D/L-MABU-F) were synthesized and further studied for pH measurements in DMF solutions using HCl and NaOH 10−1M. It was found that sterioselectivity of the A-L-Phe-co-L-MABU-F copolymer is higher than of its dextro-form, especially at basic pH.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.