Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 4

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  Electrochemistry
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
Open Chemistry
|
2011
|
vol. 9
|
issue 4
610-618
EN
Two series of substituted ferrocenes were synthesised using either the Horner-Wadsworth-Emmons reaction or monolithiation of ferrocene. The series consist of arylthio- and styryl-ferrocenes with different substituents in the para position of the aryl rings of the systems. The electronic communication was investigated by comparing the substituent effects in absorption spectroscopy and in cyclic voltammetry. A small substituent effect was found in the electronic transitions of the styryl substituted ferrocenes. The oxidation of the ferrocene derivatives showed clear substituent effects as illustrated by the linear Hammett plots. The effect was shown to be an order of magnitude larger in the arylthio-systems than in the styryl systems. It is suggested that the reason behind the large effect is a direct sulfur-iron orbital overlap. [...]
EN
Electrochemical oxidation of methylthiomethyleneisoquinolinium chloride (MTMIQ), the first alkylthiomethyl substituted ammonium salt, which is fully miscible with water has been investigated by voltammetric (SWV) method using glassy carbon electrode. On the electrode, MTMIQ undergoes oxidation at the potential near Ep = 0.07V (vs. Ag/AgCl/3 M KCl). The influence of the pH of buffers, amplitude, frequency, step potential on the received signal was studied. The best results were obtained with a citrate buffer at a pH of 5. The oxidation peak current used for MTMIQ voltammetric determination was in the range of 2–8×10−5 mol L−1, LOD = 3.7×10−6, LOQ = 1.2×10−5. The product of the oxidation was accumulated at the working electrode and was investigated by spectroscopic method. Mechanistic pathways of the oxidation have been proposed. [...]
3
Content available remote

Carbon paste electrodes in the new millennium

100%
EN
In this review (with 500 refs), both electrochemistry and electroanalysis with carbon paste-based electrodes, sensors, and detectors are of interest, when attention is focused on the research activities in the years of new millennium. Concerned are all important aspects of the field, from fundamental investigations with carbon paste as the electrode material, via laboratory examination of the first electrode prototypes, basic and advanced studies of various electrode processes and other phenomena, up to practical applications to the determination of inorganic ions, complexes, and molecules. The latter is presented in a series of extensive tables, offering a nearly complete survey of methods published within the period of 2001–2008. Finally, the latest trends and outstanding achievements are also outlined and future prospects given. [...]
|
|
issue 2
213-219
EN
The results of the kinetic measurements of Bi(III) electroreduction on a mercury electrode in 1–8 mol dm−3 chlorate (VII) solutions and in the presence of cystine demonstrate a dependence of the process on the temperature. The applied electrochemical techniques (DC polarography, cyclic and SWV voltammetry) allowed for the determination of the kinetic and thermodynamic parameters and their correlation with water activity. The catalytic activity of cystine was confirmed by the decrease in overall enthalpies of activation. The changes in the values of ΔH ≠ and ΔS 0 for Bi(III) electroreduction in the presence of cystine with the increase of chlorate (VII) concentration showed that the mechanism is different in solutions with low water activity as compared to those with high water activity. Probably it is connected with a different structure of the activated complexes (Bi-Hg(SR)2), mediating electron transfer.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.