Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  Drug delivery systems
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
A light-responsive material, aminoazobenzene functionalized AlMCM-41, was synthesized and characterized in order to be used as carrier for drug delivery devices. The light-induced hydrophobic-hydrophilic switching effect of azobenzene functionalized aluminosilicate was exploited in the release of irinotecan, a cytostatic drug. To obtain the functionalized mesoporous support, an azobenzene-silane precursor was synthesized by coupling 4-(4′-aminophenylazo) benzoic acid with 3-aminopropyl triethoxysilane and further grafted on AlMCM-41. The azobenzene functionalized mesoporous aluminosilicate exhibited no significant toxicity towards murine fibroblast healthy cells and a reduced toxicity towards murine melanocyte cells. The hybrid materials obtained by loading irinotecan on AlMCM-41 (wt. 35.4%) and aminoazobenzene modified AlMCM-41 (wt. 22%), respectively were characterized by FTIR, small and wide angle XRD, N2 adsorption-desorption isotherms and DSC analyses. A two-fold increase in the drug release rate from azobenzene functionalized aluminosilicate in phosphate buffer solution under UV irradiation was noticed, as compared with dark conditions. Moreover, the azobenzene functionalization of AlMCM-41 significantly increased the irinotecan delivery rate and total cumulative release in comparison with the pristine AlMCM-41 in similar conditions.
EN
Conversion of liquid and semisolid lipids into free flowing powders is an advantageous technique, as the carriers display high surface area, strong adsorption capacity, ease of processing, and ability to generate lipid loaded free flowing powders which can be converted to solid dosage forms like tablets and capsules. A combination of density, adsorption capacity and desorption is found to be of importance in the selection of the right adsorbent. Adsorbents like magnesium aluminium silicates (MAS), granulated fumed silica (GFS) and mesoporous silica gel (MSG) were characterized by flow property measurements, particle size, scanning electron microscopy (SEM) and pore structure by mercury (Hg) intrusion study. SEM results reveal adsorbent morphology, whereas an intrusion-extrusion study reveal pore size distributions. Tablets and capsules of oil loaded adsorbents were prepared by conventional methods. Oil loaded adsorbents were evaluated for the ability to convert oil into powder, easy of processing into tablets and capsules, and release of the loaded oil (Vitamin E) or active (Glyburide). All adsorbents possess good flow property while MSG has higher density than GFS and MAS. This helps to deliver maximum active per unit volume. A wider pore size distribution of MAS was observed in comparison to MSG and GFS. MAS exhibited poor oil release from powder and its formulations, whereas GFS demonstrated closely similar release to MSG. Maximum 70% oil loaded MSG can be delivered in tablet dosage form andMSG can deliver the highest amount in limited volume capsules due to its high density. Hence, lower density and poor oil release from MAS limit its applications in solid oral drug delivery,while both MSG and GFS proved to be suitable.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.