Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  Dissociation constant
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Risedronate inhibits bone resorption in diseases like osteoporosis, Paget’s disease, tumor bone diseases or the malfunction of phosphocalcium metabolism. The acid-base properties of risedronate in an aqueous solution have been studied in a pH range from 2 to 12 and can be described in terms of four dissociation steps: pK a,2, pK a,4, pK a,5 (related to the dissociation of POH groups) and pK a,3 related to the dissociation of protonated amino group NH3+. The mixed dissociation constants were determined at different ionic strengths I = 0.02 to 0.20 mol dm−3 KCl and of 25°C and 37°C using pH-spectrophotometric and pH-potentiometric titration methods. Determination of group parameters L 0, H T might lead to false estimates of common parameters p K a;therefore, the computational strategy employed is important. A comparison between the two programs ESAB and HYPERQUAD demonstrated that the ESAB program provides a better fit of potentiometric titration curve. The thermodynamic dissociation constants pK aT were estimated by a nonlinear regression of (pK a, I) data and a Debye-Hückel equation at 25°C and 37°C, pK a,2T = 2.37(1) and 2.44(1), pK a,3T = 6.29(3) and 6.26(1), pK a,4T = 7.48(1) and 7.46(2) and pK a,5T = 9.31(7) and 8.70(3) at 25°C and 37°C using pH-spectroscopic data and pK a,2T = 2.48(3) and 2.43(1), pK a,3T= 6.12(2) and 6.10(2), pK a,4T = 7.25(2) and 7.23(1) and pK a,5T = 12.04(5) and 11.81(2) at 25°C and 37°C. The ascertained estimates of three dissociation constants pK a,3, pK a,4, pK a,5 are in agreement with the predicted values obtained using PALLAS [...]
EN
The mixed dissociation constants of methotrexate - chemically (2S)-2-[(4-{[(2,4-diamino-7,8-dihydropteridin-6-yl)methyl] (methyl)amino}phenyl)formamido]pentanedioic acid (the cas number 59-05-2) at various ionic strengths I of range 0.01–0.4, and at temperatures of 25°C and 37°C, were determined with the use of two different multiwavelength and multivariate treatments of spectral data, SPECFIT32 and SQUAD(84) nonlinear regression analyses and INDICES factor analysis according to a general rule of first, determining the number of components, and then calculating the spectral responses and concentrations of the components. Concurrently, the experimental determination of the thermodynamic dissociation constants was in agreement with its computational prediction of the PALLAS programme based on knowledge of the chemical structures of the drug. The factor analysis in the INDICES programme predicts the correct number of light-absorbing components when the data quality is high and the instrumental error is known. Three thermodynamic dissociation constants were estimated by nonlinear regression of {pK a , I} data: for methotrexate pK a1T= 2.895(13), pK a2T= 4.410(14), pK a3T= 5.726(15) at 25°C and pK a1T= 3.089(15), pK a2T= 4.392(12), pK a3T= 5.585(11) at 37°C, where the figure in brackets is the standard deviation in last significant digits. The reliability of the dissociation constants of the drug were proven by conducting goodness-of-fit tests of the multiwavelength spectrophotometric pH-titration data. [...]
EN
The mixed dissociation constant of naphazoline is determined at various ionic strengths I [mol dm−3] in the range of 0.01 to 0.26 and at temperatures of 25°C and 37°C using ESAB and HYPERQUAD regression analysis of the potentiometric titration data. A strategy of efficient experimentation is proposed in a protonation constant determination, followed by a computational strategy for the chemical model with a protonation constant determination. Two group parameters, L 0 and H T were ill-conditioned in the model and their determination is therefore uncertain. These group parameters, L 0 and H T, can significantly influence a systematic error in the estimated common parameter pKa and they always should be refined together with pK a. The thermodynamic dissociation constant pK aT was estimated by nonlinear regression of {pK a, I} data at 25°C and 37°C: for naphazoline pK alT = 10.41(1) and 10.13(2). Goodness-of-fit tests for various regression diagnostics enabled the reliability of the parameter estimates to be found. [...]
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.