Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  Ceramic membrane
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
In this study, a Taguchi experimental design methodology was used to determine the importance of process parameters influencing the ultrafiltration (UF) of oil-in-water emulsions. Four parameters including pH (5–11), oil concentration (φ) (0.5–3% (v/v)), temperature (T) (25–45°C) and trans-membrane pressure (TMP) (1–5 bar) were studied at three levels. The highest flux was used as optimization criterion. In order to reduce the number of experiments, a Taguchi method was applied. Analysis of variance (ANOVA) was used to determine the most significant parameters affecting the optimization criterion. Filtration experiments were performed in a cross-flow operation at a total recycle condition in a laboratory-scale plant. The ceramic UF membrane with a pore size of 50 nm was employed in a tubular module with an active area of 0,418 m2. We used water-soluble cutting oil mixed with water as a model oil-in-water emulsion. During the experiment, the drop size and zeta potential distributions were evaluated. The optimum conditions for UF providing the highest flux were found at TMP = 5 bar, pH = 7, and φ = 0.5 v/v%. The pH of emulsion had the highest impact on COD retention. The results of this study could be used as a guideline for operating UF systems with ceramic membranes at optimal conditions.
Open Chemistry
|
2012
|
vol. 10
|
issue 1
127-136
EN
A study using coagulation-flocculation and ultrafiltration (UF)methods for pulp and paper mills’ wastewater (WW)was carried out. The reduction efficiencies of turbidity and chemical oxygen demand (COD), the removal efficiency of total suspended solids (TSS) and absorbance at 254 nm were the main evaluating parameters. Using coagulation-flocculation, the efficiencies of alum and polyaluminum chloride (PACl)were studied, when used alone and when coupled with flocculant aids. During the coagulation-flocculation process, use of a single coagulant, the coagulant dosage, and the pH, play an important role in determining the coagulation efficiency. At the optimum PACl dosage of 840 mg L−1 and optimum pH of 9.0, turbidity reduction was found to be 94.5%. A combination of inorganic coagulant and flocculant, or polymer was applied, in which PACl was used coupled with the polyelectrolytes Organopol WPB20 and WPB40. PACl coupled with Organopol WPB20 by optimal pH 9 gave a 98.3% reduction of turbidity, 91.9% removal of TSS, and a 60.2% reduction in COD. Ultrafiltration trials were carried out on a pilot scale. A tubular module was used with ceramic membrane. This membrane is a multi-channel membrane with an active surface layer made of Al2O3 and ZrO2. Within the acidic range, the turbidity and TSS were removed at above 99%.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.