Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  Box-Behnken
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
Open Chemistry
|
2010
|
vol. 8
|
issue 5
1069-1077
EN
The nanocatalyst-assisted sonodegradation of Basic Blue 41 (BB41) dye in aqueous medium was modeled and optimized using response surface method (RSM) based on Box-Behnken design. The studied variables included pH, initial dye concentration, H2O2 concentration and sonolysis time while each factor varied at three levels: Low level (−1), Medium level (0) and High level (+1). The ultrasound -assisted degradation was well described by developing quadratic model with correlation value squared (R2) of 0.9114. Factor effects along with interaction effects were evaluated. The graphical optimization step was conducted to achieve the best experimental condition in dye removal. pH, H2O2 concentration and initial dye concentration of the reaction were investigated. It was recognized that at lower pH values the dye removal rate decreased. However, dye removal rate increased (82.5%) by increasing the concentration of H2O2 and by lowering the initial dye concentration. [...]
EN
Abstract In this investigation a waste biological material, soybean meal, was applied as a biosorbent for heavy metal ions (CrIII). The diffusive Webber-Morris model and the pseudo-II-order model suitably described the kinetics of CrIII ions binding on soybean meal. The Langmuir-Freundlich equation was valid for the description of the isotherm. Inductively coupled plasma optical emission spectroscopy (ICP-OES), FTIR and scanning electron microscopy with an energy dispersive X-ray analytical system (SEM-EDX) were used in order to identify the mechanism of the metal ions binding. The analysis of the composition of the enriched soybean meal confirmed the contribution of ion exchange in the biosorption process. Three-variable-three-level Box-Behnken design was used to determine the optimal conditions for biosorption of CrIII on soybean meal. The optimal conditions for predicted maximum Cr3+ uptake (61.07 mg g−1) by soybean meal were estimated by Matlab and established as temperature of 38.04°C, initial metal concentration 500 mg L−1 and biosorbent dosage 1 g L−1. Graphical abstract [...]
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.