Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 4

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  Antioxidant enzymes
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Organophosphate pesticides are known to induce oxidative stress and cause oxidative tissue damage, as has been reported in studies concerning acute and chronic intoxication with these compounds. Our objective was to investigate the activities of brain antioxidant enzymes and malonyldialdehyde, as well as the level of carbonyl groups, in rats sub-chronically intoxicated with chlorpyrifos at doses of 0.2, 2 and 5 mg per kg of body weight per day. It was found that chlorpyrifos induces change in brain antioxidant enzymes, such as superoxide dismutase, catalase and glutathione peroxidise, but to a different degree in comparison to proper control values; however, the elevated antioxidant enzymes activities failed to check lipid and protein peroxidation in the brains of rats. Thus, in sub-chronic intoxication with chlorpyrifos, as evidenced by increased level of malonyldialdehyde and carbonyl groups, oxidative stress is induced. Measurements of protein carbonyl groups appeared to give more consistent responses in the rats’ brains when compared to the malonyldialdehyde level after sub-chronic chlorpyrifos treatment.
EN
Study aim: To assess the effects of training on the activities of antioxidant enzymes in erythrocytes and on the total plasma antioxidant status in competitive pentathletes.Material and methods: A group of 10 senior male pentathletes (P) and of 10 sedentary male subjects (S) participated in the study. Blood was withdrawn from the antecubital vein in the morning, in the preprandial state. The activities of superoxide dismutase (SOD), glutathione reductase (GR) and catalase (CAT) were determined in erythrocyte haemolisates, that of glutathione peroxidase (GPX) in whole blood haemolysate, and the total antioxidant status (TAS) in plasma.Results: The activities of all enzymes were significantly (p<0.05 - 0.001) higher in P than in S group while no significant between-group difference was found for TAS.Conclusions: The pronounced enzymatic antioxidative potential and oxidative stress defence observed in athletes practicing modern pentathlon may be attributed to their extensive training.
EN
The aim of this study was to research the seasonal changes of antioxidant enzyme activity and total antioxidant capacity in leaves of Astragalus onobrychis L. subsp. chlorocarpus (Griseb.) S. Kozuharov et D.K. Pavlova. Leaves of A. onobrychis were collected during the different stages of growth and analyzed for antioxidant enzyme activity: superoxide dismutase, catalase, guaiacol peroxidase, glutathione peroxidase. Quantities of malonyldialdehyde, superoxide radicals, and hydroxyl radicals were measured as well as the content of soluble proteins. Furthermore, total antioxidant capacity was determined by the inhibition of chemiluminescence activity of blood phagocytes by leaf extracts. Stages of vegetation significantly affected the accumulation of superoxide radicals, but there were no significant differences in hydroxyl radical quantity and lipid peroxidation levels during vegetation. Soluble proteins vary greatly between different stages of growth. Seasonal changes were found to have an effect on enzymatic activities. During the spring season, guaiacol peroxidase showed the highest levels. Catalase and glutathione peroxidase increased their activities in summer, while, during the autumn season, superoxide dismutase showed maximum activity. On the basis of chemiluminescence assay, it can be concluded that leaf extract of A. onobrychis possesses a significant antioxidant capacity thus protecting plants during environmental stress. [...]
EN
The production of reactive oxygen species (ROS) in cells is well balanced with their elimination by the antioxidant defence system. This balance is essential for maintenance of physiological conditions, and its disturbance (oxidative stress) has been suggested as a potential pathogenic mechanism in a variety of diseases, accompanied by inflammation. In this study, the in-vivo effects of nociceptin (N/OFQ(1–13)NH2) and its structure analogue [Orn9]N/OFQ(1–13)NH2 were studied on markers of oxidative stress in erythrocytes and liver of rats 4 hours after subplantar administration of carrageenan (CG) (1%, 100 µl) in the right hind paw. A considerable inflammatory oedema of the paw was observed. CG did not change blood haemoglobin content, hematocrit value, glutathione level and antioxidant enzyme activities in the erythrocytes, but there was an increase in lipid peroxidation. In liver, CG-induced imbalance was manifested by an increase in lipid peroxidation and a decrease in glutathione level. Both peptides (20 µg, i.p.), when administered alone, had no effect on all parameters tested. When either [Orn9]N/OFQ(1–13)NH2 or N/OFQ(1–13)NH2 was injected simultaneously with CG or 15 minutes before it, they did not affect the CG-induced changes in the antioxidant status of the erythrocytes and liver. Our results suggest that the peptides tested did not play a role in the free radical processes that accompany CG-induced paw inflammation.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.