This paper presents an evaluation of the performance degradation of photovoltaic modules after twelve operation years in a steppe region environment in Algeria. The objective is to understand the different degradation modes of the photovoltaic modules and associated factors and their impact on the electrical properties (V_{oc}, I_{sc}, V_{max}, I_{max}, P_{max} and FF) using the degradation tests of IEC 61215 qualification standard and the electroluminescence test. The experimental results show that yearly degradation rates of the maximum power output P_{max} present the highest possible loss, ranging from 2.08% to 5.2%. Additionally, the results show that the short-circuit current I_{sc} comes second with yearly degradation rates spanning from 2.75% to 2.84%. Finally the open-circuit voltage V_{oc} is the least affected, with yearly degradation occurring from 0.01% to 4.25%.
Solar radiation coming to a solar panel is absorbed and converted into thermal energy, increasing its temperature. This study is focused on the solar thermal panels. As known, the analysis of thermal performance of the collector includes such parameters as solar irradiance, ambient temperature and configuration of collectors etc. In this study, thermal analysis of the absorbent plate of a flat plate solar collector and the temperature transfer to the working fluid, were investigated. During thermal analysis the absorbent plate was considered as an one-dimensional fin. It is assumed that lower surface of the solar panel is ideally insulated in this study. Therefore solar irradiance and heat loss to the environment are analyzed at the upper surface of the absorber plate. This study is aimed to investigate the relations of temperature distribution on the absorber plate and heat transfer from the absorber plate to the fluid. The achievable maximum fluid temperature at the practical working conditions, which quantifies the availability of usable heat energy, obtained by the collector, has been determined as a function of solar irradiance. Procedure is based on steady state analysis and on calculation of the thermal performance of flat-plate collector. The effects of the parameters, which determine the collector efficiency, have been investigated by evaluating all results. Results show that the flat-plate collector performs good and provides the desired quantity of hot water.
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.