Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  52.58.Lq
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
100%
EN
The Z Refurbishment Project was completed in September 2007. Prior to the shutdown of the Z facility in July 2006 to install the new hardware, it provided currents of ≤ 20 MA to produce energetic, intense X-ray sources ( ≈1.6 MJ, > 200 TW) for performing high energy density science experiments and to produce high magnetic fields and pressures for performing dynamic material property experiments. The refurbishment project doubled the stored energy within the existing tank structure and replaced older components with modern, conventional technology and systems that were designed to drive both short-pulse Z-pinch implosions and long-pulse dynamic material property experiments. The project goals were to increase the delivered current for additional performance capability, improve overall precision and pulse shape flexibility for better reproducibility and data quality, and provide the capacity to perform more shots. Experiments over the past year have been devoted to bringing the facility up to full operating capabilities and implementing a refurbished suite of diagnostics. In addition, we have enhanced our X-ray backlighting diagnostics through the addition of a two-frame capability to the Z-Beamlet system and the addition of a high power laser (Z-Petawatt). In this paper, we will summarize the changes made to the Z facility, highlight the new capabilities, and discuss the results of some of the early experiments.
EN
We performed computer modelling of a fast electrical discharge in a nitrogen-filled alumina capillary in order to discover discharge system parameters that may lead to efficient recombination pumping of soft X-ray laser with active medium created by H-like nitrogen ions. The space-time dependences of pinch plasma quantities were found by means of a one-dimensional MHD code. Time dependences of populations of all ionisation states and populations of selected energy levels of lithium-, helium- and hydrogen-like nitrogen ions were evaluated using the FLY code as a post-processor. The population inversion was found at the quantum transition corresponding to the Balmer α-line of N6+ ions and the resulting gain factor was evaluated for different capillary radii, initial pressure, electric current peaks and periods. A gain factor of 1 cm−1 spanning the time interval of 1 ns was found for an optimised arrangement with capillary radius 1.5 mm, peak current 50 kA, quarter period 40 ns and filling gas pressure 0.5 kPa. It is pointed out that even higher values of the gain factor may be achieved with thinner capillaries and shorter current pulses, e.g. a gain factor of 6 cm−1 is achieved if the capillary radius is 0.5 mm, peak current 56 kA, quarter period 15 ns, and filling nitrogen pressure 3.9 kPa.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.