Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

Refine search results

Journals help
Years help
Authors help
Preferences help
enabled [disable] Abstract
Number of results

Results found: 14

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  3D printing
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Background: For about 20 years we have been observing the development of three-dimensional (3D) printing. The aim of this study was to systematize the current knowledge on the use of 3D printing technology in neurosurgery and to aetmpt an outline the future paths of its development. Material and methods: The analysis was based on English-language literature from 2017-2021 indexed in the Mendeley and Scopus databases. Results: The application of 3D printing in neurosurgery concerns: 1) teaching students, 2) training of residents neurosurgeons, 3) individualized surgery planning, 4) dedicated cranial and spinal implants, 5) the future of 3D printing in neurosurgical implantology. There were 5 main neurosurgery subtopics in which 3D printing was used: “vascular neurosurgery” (31%), “skull, cranial neurosurgery” (22.4%), “neuro-oncology” (19.3%), “spine” (14.3%) and “others” (13%). The number of published articles has been steadily increasing by 11-33% annually. Conclusion: 3D printing has an enormous potential for clinical use and in the we will continue to observe its dynamic development. In neurosurgery 3D prints are currently most commonly used for didactic purposes as detailed anatomical models, for training residents and young surgeons and by specialists for the simulation of complex or innovative surgeries. The future of the use of additive 3D printing in neurosurgery lies in the biological 3D printing, the creation of artifcial organs and the development of biological implants in tissue engineering. Dzierżanowska N, Krakowiak M, Sokal P. The application of 3D printing in neurosurgery: present and future. Eur J Transl Clin Med. 2023;6(1):70-78.
EN
Technological advancement, availability and common use of diagnostic imaging slowly but consistently leads to a change in its nature from being additional studies to becoming the basis for diagnostic process and treatment planning especially in complex cases that require surgical treatment. CT angiography study presentation using the illusion called “Pepper’s Ghost” in comparison to a three-dimensional printout and regular CT scan has been made to point out the relevance of research and implementation of new technologies in the diagnosis and surgical planning. Our image, despite being far from ideal and being just an illusion of a hologram, was more appealing and detailed to surgeons in comparison to a printed 3D model and standard CT angiography displayed with Osirix software. In order to change the existing methods of presenting imaging studies, it is advisable to use latest technologies, and among those currently available, ones based on virtual or mixed reality deserve special attention.
EN
Introduction: Conjoined twins are identical twins with fused bodies, joined in utero. They are rare complications of monochorionic twinning. The purpose of this study is to describe the various types of conjoined twins, the role of imaging and recent advances aiding in their management. Material and methods: This was a twin institutional study involving 3 cases of conjoined twins diagnosed over a period of 6 years from 2010 to 2015. All the 3 cases were identified antenatally by ultrasound. Only one case was further evaluated by MRI. Results: Three cases of conjoined twins (cephalopagus, thoracopagus and omphalopagus) were accurately diagnosed on antenatal ultrasound. After detailed counseling of the parents and obtaining written consent, all the three cases of pregnancy were terminated. Delivery of the viable conjoined twins was achieved without any complications to the mothers, and all the three conjoined twins died after a few minutes. Conclusion: Ultrasound enables an early and accurate diagnosis of conjoined twins, which is vital for obstetric management. MRI is reserved for better tissue characterization. Termination of pregnancy when opted, should be done at an early stage as later stages are fraught with problems. Recent advances, such as 3D printing, may aid in surgical pre-planning, thereby enabling successful surgical separation of conjoined twins.
PL
Wstęp: Bliźnięta nierozdzielone to bliźnięta jednojajowe zrośnięte ze sobą w życiu płodowym. Jest to rzadkie powikłanie wśród bliźniąt jednokosmówkowych. Celem niniejszej pracy było przedstawienie różnych rodzajów bliźniąt nierozdzielonych, a także omówienie roli badań obrazowych oraz nowych technologii usprawniających postępowanie w takich przypadkach. Materiał i metody: Badaniem, przeprowadzonym w dwóch ośrodkach, objęto trzy przypadki bliźniąt nierozdzielonych, zdiagnozowane w okresie 6 lat ­– od 2010 do 2015 roku. W każdym przypadku rozpoznanie ustalono w prenatalnym badaniu ultrasonograficznym. W jednym przypadku w toku dalszej diagnostyki przeprowadzono badanie metodą rezonansu magnetycznego. Wyniki: Prezentowane trzy przypadki bliźniąt nierozdzielonych (cephalopagus, thoracopagus i omphalopagus) zostały prawidłowo zidentyfikowane w prenatalnym badaniu ultrasonograficznym. Po szczegółowym omówieniu rozpoznania z rodzicami oraz otrzymaniu pisemnej zgody wszystkie ciąże terminowano. Poród żywych bliźniąt był niepowikłany dla matek i we wszystkich przypadkach dzieci zmarły kilka minut po urodzeniu. Wnioski: Badanie ultrasonograficzne umożliwia wczesne i trafne rozpoznanie bliźniąt nierozdzielonych, co jest kluczowe w położnictwie. Rezonans magnetyczny stosuje się w celu bardziej szczegółowego scharakteryzowania tkanek. W przypadku decyzji o terminacji ciąży odpowiednie postępowanie należy wdrożyć jak najwcześniej, ze względu na problemy, jakie mogą się pojawić w późniejszych etapach ciąży. Nowe technologie, jak druk trójwymiarowy, mogą być pomocne w planowaniu zabiegów chirurgicznych i umożliwiają tym samym skuteczne rozdzielenie bliźniąt. Artykuł w wersji polskojęzycznej jest dostępny na stronie http://jultrason.pl/index.php/wydawnictwa/volume-17-no-71
EN
Low drug loading efficiency is the limiting factor in the use of pre-fabricated filaments for 3D printing of pharmaceuticals. The aim of present study was to modify the material properties of pre-fabricated filament by incorporating the suitable solubilizing aids in order to enhance the drug loading efficiency. Loratadine was loaded into PVA filaments by using solubilizers (Soluplus®, Sodium lauryl sulphate) and plasticizers (glycerin and Polyethylene glycol-400) and the printability of filaments was investigated. The treated filaments were characterized for morphology and diameter changes, drug content, FTIR and thermal properties and printed into tablets of suitable dimensions. The printed tablets were also characterized for drug assay and drug release. The results have shown that the surface of different drug loaded filaments become rough with almost no change in diameter hence, these filaments remained printable. However, there was 7 to 24 times enhancement in drug content of filaments treated with particularly those pretreated with glycerin and soaked in drug solution containing Soluplus. The printed tablets have also shown almost similar drug content as their precursor filaments and the release followed diffusion mechanism in most of the formulations. The study concludes that the treatment of PVA filament with solubilizer aids has significantly improved the drug loading entrapment without compromising the printability.
EN
Three-dimensional (3D) biomaterial manufacturing strategies show an extraordinary driving force for the development of innovative solutions in the biomedical sector, including drug delivery systems, disease modelling and tissue and organ engineering. Due to its remarkable and promising biological and structural properties, chitosan has been widely studied for decades in several potential applications in the biomedical field. However, tools in the form of 3D printers have created new possibilities for the production of chitosan models, implants and scaffolds for cell cultures that are much more precise than existing ones. The article presents current achievements related to the possibility of using chitosan to create new materials for 3D printing in the form of chitosan bioinks, filaments, resins and powders dedicated for bioprinting, fused deposition modelling, stereolithography/digital light processing and selective laser sintering methods, respectively.
EN
Objective: To perform a ‘virtual autopsy’ on the Egyptian mummy and to study, understand, and interpret three-dimensional (3D) high-resolution computed tomography (CT) scan images of Osirmose’s mummy with a multidisciplinary team composed of radiologists, archaeologists, and oral and maxillofacial surgeon. Material and methods: We studied the Osirmose’s mummy, the doorkeeper of the Temple of Re, who lived during the XXVth dynasty. His mummy belongs to the Royal Museum of Art and History (Inv. E.5889). We performed a high resolution CT scanning of Osirmose’s mummy. We also 3D printed the upper maxilla of the mummy and a tooth found in the oesophagus with a clinically validated low-cost 3D printer. Results: We confirmed the male sex of the mummy. We found the heart, aorta, and  kidneys inside the mummy’s body. Brain excerebration was performed through the right ethmoid bone pathway. A wood stick embedded in the dura mater tissue was found inside the skull. The orbicularis oculi muscle, internal canthus, optical nerves, and calcified eye were still present. Artificial eyes were added above the stuffing of eye globes. The skull and face were embalmed with multiple layers of inner bandages in a sophisticated manner. The wear of maxillary teeth was asymmetrical and more pronounced on the maxilla. We discovered three anomalies of the upper maxilla: 1) a rectangular hole on the palatine side of tooth n°26 (the palatine root of tooth n°26 was missing), 2) an indentation at a right angle palatine to tooth n°27, and 3) a semilunar shape of edges around the osteolytic lesion distal and palatine to tooth n°28. Conclusions: The present study provides the first evidence of a tooth removal site, and of oral surgery procedures previously conducted in a 2700-year-old Egyptian embalmed mummy. We found traces of dental root removal, and the opening of a tooth-related osteolytic lesion before the person’s death. The multidisciplinary team, the use of a high resolution 3D CT scan and a 3D-printed model of the upper maxilla helped in this discovery.
EN
The objective of this work was to define the different criteria that a general dentist will have to take into account to equip himself with a three-dimensional (3D) printer for dental use. We have identified a total of 1037 3D printers produced by 342 companies and 211 3D printers from 88 companies that can print with 25µm layers. To be able to compare them, we evaluated 16 different characteristics: 1) family of 3D printing process, 2) minimum layer thickness, 3) presence or absence of scientific study to validate the minimum layer thickness, 4) minimal resolution on XY axes, 5) type of calibration, 6) printing environment, 7) presence of a heated printing plate, 8) maximum printing speed (in mm/s) with a link giving details of the layer thickness used, the XY resolution used and the material used to determine this speed, 9) dimensions of printing capacity, 10) capacity to use materials not originating from the manufacturer, 11) capacity to use biocompatible materials, 12) weight (in kg) and printer dimensions (in cm), 13) compatible operating systems, 14) compatible 3D print file types, 15) after-sales service and warranty period, 16) price, including whether taxes are included s or not. We noted a great heterogeneity of the information present, and information often absent regarding: 1) the type of calibration, 2) the printing speed, 3) the price, 4) the after-sales service, 5) the guarantee as well as 6) the materials which are taken into account by the 3D printer. We described multiple communication difficulties with our contacts and a very dynamic development of the 3D printing world. Finally, we proposed the characteristics of an "ideal" dental 3D printer and of an "ideal" partner company for a dentist wishing to obtain the 3D printer of his choice.
FR
L’objectif de ce travail est de définir les différents critères qu’un dentiste généraliste doit prendre en compte pour s’équiper d’une imprimante tridimensionnelle (3D) à usage dentaire. Nous avons recensé au total 1037 imprimantes 3D produites par 342 entreprises et 211 imprimantes 3D de 88 entreprises pouvant imprimer avec des couches de 25µm. Pour pouvoir les comparer nous avons évalué 16 caractéristiques différentes: 1) famille de procédé d’impression 3D, 2) épaisseur de couche minimale, 3) présence ou non d’étude scientifique de validation de l’épaisseur de couche minimale, 4) résolution XY minimale, 5) type de calibrage, 6) environnement d’impression, 7) présence d’un plateau d’impression chauffant, 8) vitesse d’impression maximale (en mm/s) avec un lien donnant le détail de l’épaisseur de couche utilisée, de la résolution XY utilisée et du matériau utilisé pour déterminer cette vitesse, 9) dimensions de capacité d’impression, 10) capacité d’utiliser des matériaux ne provenant pas de l’entreprise constructrice, 11) capacité d’utiliser des matériaux biocompatibles, 12) poids (en kg) et dimensions de l’imprimante (en cm), 13) systèmes d’exploitation compatibles, 14) types de fichier d’impression 3D compatibles, 15) gestion du service après-vente et durée de la garantie, 16) prix, en indiquant si les taxes sont incluses ou non. Nous avons constaté une grande hétérogénéité des informations présentes et des informations souvent absentes en ce qui concerne : 1) le type de calibrage, 2) la vitesse d’impression, 3) le prix, 4) le service après-vente, 5) la garantie ainsi que 6) les matériaux qui sont pris en compte par l’imprimante 3D. Nous avons décrit des difficultés de communication multiples avec nos interlocuteurs et un développement très dynamique du monde d’impression 3D. Enfin, nous avons proposé des caractéristiques d’une imprimante 3D dentaire « idéale » et d’une entreprise-partenaire « idéale» pour un dentiste désireux de se procurer l’imprimante 3D de son choix.
14
51%
EN
Currently, 3D printing in medicine does not comprise only prostheses or implants, but also medical modelling and surgical planning. The future of 3D printing is printing combined with tissue bioengineering (bioprinting). Scaffolds made in 3D technology containing living cells are a step to creating tissues and organs. Three-dimensional printing in surgery is now considered the future of reconstructive and regenerative medicine. Head and neck surgery also benefits from advances in 3D printing. In this article, we will describe some of the possibilities offered by 3D printing in the aspect of education, training, and printed prostheses for the needs of head and neck surgery.
PL
Obecnie druk 3D w medycynie oznacza nie tylko protezy czy implanty, ale także modelowanie medyczne i planowanie chirurgiczne. Przyszłością będzie druk 3D połączony z bioinżynierią tkankową (bioprinting). Rusztowania wykonane w technologii 3D zawierające żywe komórki są krokiem do tworzenia tkanek i narządów. Druk trójwymiarowy w chirurgii uważany jest obecnie za przyszłość medycyny rekonstrukcyjnej i regeneracyjnej, a z dokonań na tym polu korzysta także chirurgia głowy i szyi. W prezentowanym artykule opiszemy niektóre możliwości, jakie daje druk 3D w aspekcie edukacji, szkoleń oraz drukowanych protez na potrzeby chirurgii głowy i szyi.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.