Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 5

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
Content available remote

Multi-cation biosorption bychlorella kessleri

100%
EN
This paper discusses the biosorption in a multi-cation system as an example of advances in the method of ions removal/binding to the biomass. Biosorption experiments were conducted on Chlorella kessleri biomass. The ions used in the experiment were Co(II), Cu(II), Mn(II) and Zn(II) and had the following configurations: binary, ternary and quaternary system. Also, the effect of the following anions Cl-, NO3-, SO42- on the biosorption process in the quaternary system (initial concentration of each ion was 0−300 mg L-1) was examined. The affinity order determined in the experiment was as follows: Cu(II)>Zn(II)>Mn(II)>Co(II). At higher concentrations of Cu(II) cations, the strong competition effect between Cu(II) cations with the remaining cations was observed. The modified Langumir competition model was proposed to support the biosorption method in the description of the experimental data of inhibited metal ions biosorption. After the influence of anions was examined, the highest total biosorption capacity was obtained for 1:1:2 system (Cl-: NO3- : SO42-).
EN
In this article, the phytotoxicity of biofertilizer produced from bones and its utilitarian properties are presented. Biofertilizer was obtained from bones in a solubilization process of phosphates conducted by bacteria Bacillus megaterium. Two in vivo tests were used for examination of the utilitarian properties of the biofertilizer: a hydroponic and a germination test. The experiment was performed using three groups of plants and four replications: group 1 − not treated (control 1), group 2 − with a conventional fertilizer (control 2), and group 3 – with the biofertilizer (experimental group). In the hydroponic tests, the best growth parameters were found for the samples where the biofertilizer was applied. The greater dry mass of plants was observed for plants collected from this group compared to the control 1 group and the group where the commercial fertilizer were used. In the case of the plant length and the intensity of green color, statistically significant differences were found. The utilitarian properties of the biofertilizer, evaluated from a germination test, were similar to those of the classical fertilizer. Statistically significant differences were found between the mass and intensity of green color of the experimental group (with the biofertilizer) and the control 1 group.
EN
In this paper, the production of phosphate biofertilizers from bones by phosphate-solubilizing bacteria Bacillus megaterium is presented. The biofertilizers used in this study contain phosphorus compounds that are in available form to plants as well as components of growth medium. The solubilization was performed under two conditions; with chlorides and with sulphates instead of chlorides. Three biofertilizer forms are proposed in relation to the doses of bones applied in the solubilization process (4, 10 or 20 g L-1). The solubilization degree varied according to the bacterial medium formulation and the bones doses. The replacement of chlorides with sulphates yielded a lower growth rate, and resulted, in a lower solubilization. The specific growth rate of the cells of B. megaterium in a sulphate medium was lower than compared with the specific growth rate of cell culture in a medium of chlorides of about 22.4, 39 and 14%, for 4, 10 and 20 g L-1 of bones concentration, respectively. In the stationary phase, the solubilization factor (SF) was higher (61.7%) for the solubilization process conducted in a medium with chlorides − Cbone 4 g L-1, compared with the solubilization process conducted in the medium of sulphates (52.7%).
4
81%
EN
The paper presents the results of the selection of the flocculent and coagulant types as well as the evaluation of the best parameters of treatment of wastewater deriving from meat-bone meal (MBM) production. The efficiency of purification depends on the composition of the coagulant and flocculent as well as the magnitude of the applied dose. The use of ferrous sulfate PIX 113 coagulant assured the highest reduction of the contamination content in filtrate, resulting in the reduction of color of wastewater by 96.8%, turbidity by 99.2%, and the phosphorus content by 99.9% and nitrogen by 92.4%, with the Chemical Oxygen Demand (COD) being reduced by 62.8%. The X-ray method proved the significant presence of phosphorus salts in the content of sediment. The moisture content in the sediment varied from 45 to 78.5%. The elaborated method of pretreatment of wastewater from meat-bone meal unit was verified on an industrial scale. A very high reduction of the phosphorus content in filtrate (> 99.9%), and a significant reduction of COD as well as nitrogen and suspended solid contents (90−95%) were presented. A high reduction of contamination in filtrate increases the production capacity of the existing biological treatment plant, in the next step of treatment of filtrate in the biological treatment unit.
EN
In this study, the effect of the increase in the initial concentration of Na(I) ions in the solution during biosorption of Cr(III) ions by two edible algae: marine macroalga - Enteromorpha prolifera and microalga - Spirulina sp. was investigated. During biosorption, essential elements are exchanged with alkali and alkaline earth metal ions (e.g. Na(I) ions), which are naturally bound with the biomass. The goal of this study was to investigate the effect of the increase in concentration of Na(I) ions on biosorption performance. The equilibrium of the process is described by Langmuir equation. It was found that with the increase in the initial concentration of NaCl (from 132 to 7331 mg L−1), there was a lower biosorption capacity of Enteromorpha prolifera (from 85.8 to 51.0 mg g−1) and Spirulina sp. (74.2 to 20.7 mg g−1) towards Cr(III) ions. It was also possible to determine the number of times the solution used in the biosorption process can be recycled and yet mantain high biosorption capacity. The determined numbers were: 16 for Enteromorpha prolifera and 19 for Spirulina sp. [...]
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.