Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
The large majority of excitatory synapses are located on dendritic spines which are discrete membrane protrusions present on neuronal dendrites. Interestingly the highly heterogeneous morphology of dendritic spines is thought to be the morphological basis for synaptic plasticity associated to learning and memory formation. Indeed dendritic spines structure is regulated by molecular mechanisms that are fine tuned and adjusted according to level and direction of synaptic activity, development, specific brain region, and different experimental behavioral conditions. This supports the idea that reciprocal changes between the structure and function of spines impact both local and global integration of signals within dendrites. An increasing number of proteins have been found to be morphogens for dendritic spines and provided new insights into the molecular mechanisms regulating spine formation and morphology. Thus determining the mechanisms that regulate spine formation and morphology is essential for understanding the cellular changes that underlie learning and memory in normal and pathological conditions.
EN
Bio-functionalized surfaces were prepared to study the adherence and differentiation capacity of neural stem cells derived from human umbilical cord blood (HUCB-NSC). Cell growth platforms containing arranged arrays of adhesive molecules were created by microcontact printing on a biologically inert surface. Biomolecules used to prepare microarray platforms included the extracellular matrix protein fibronectin and the polyaminoacid poly-L-lysine. HUCB-NSC plated on microplatforms at various serum conditions showed serum and molecule type dependent capacity for adhesion and differentiation. Poly-L-lysine allowed the maintenance of stem-like non differentiated cells attached to the surface, whereas fibronectin promoted spreading and neural commitment. Serum deprivation did not influence the attachment of HUCB-NSC to fibronectin, but significantly enhanced the attachment to poly-L-lysine and promoted dBcAMP induced neuronal differentiation. A bio-pattern of squares with interconnecting lines was used to guide neuronal differentiation by directing cell protrusion outgrowth. Tailoring the geometry of the bio-pattern enabled directing and monitoring of the neural stem cells. development in the large scale multiparameter biotests.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.