Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 4

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
This work is devoted to the calculation of the concentration of radiation displacement defects (RDD) in bismuth germanate and bismuth silicate crystals as a function of particle energy (electrons and neutrons). Energy dependencies of RDD concentrations are discussed in comparison with results for other complex oxide crystals. The obtained results show that for the case of electron irradiation the radiation hardness of BSO and BGO should be similar to other oxide crystals, but for neutrons is drastically smaller. Additionally, for the neutron irradiation, the efficiency of the production of defects in the oxide sublattice is drastically smaller than for other oxide crystals.
EN
Pentacene have recently become the subject of intense studies due to their physical properties which follow from the states of their outer-shell electrons that are able to take part in molecule bonding. The symmetry of these molecules provides the classification of quantum states according to the group theory method. In this paper, we apply a molecular state-space factorization scheme for the classification of pentacene molecules based on the structure of their electron states.
EN
In the present work, a CdTe alloy doped with a relatively high concentration of chromium (1%), and a CdTe:Cr layer, have been studied. Absorption and reflectivity spectra were measured at room temperature. They indicate the presence of chromium in the divalent state, both in the alloy and in the layer.
EN
Organic films fabrication offers the possibility of producing electronic devices of low weight, mechanical flexibility and low cost. One suitable material for organic film fabrigation which is the subject of the great interest is pentacene, because it is characterized by the large carrier mobility (∼1 cm2/Vs). In this work, the growth of pentacene layers using pulse laser deposition (PLD) on different substrates (glass/ITO, Si) is described and various processing parameters are investigated. Two pulsed YAG:Nd3+ laser wavelengths were used for the ablation of the PLD target: the first harmonic at 1064 nm aGn:dNdth3+e second at 532 nm. The structure of the layers formed was examined using SEM and RHEED methods. The results were compared with results of optical spectroscopy studies. It will be shown that layers deposed using second harmonics have a higher quality than those for first harmonic. The other PLD parametersalso have a strong influence on the structure quality of layers.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.