Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 5

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
The perturbation to the Noether symmetry and the Noether adiabatic invariants of discrete difference variational Hamilton systems are investigated. The discrete the Noether exact invariant induced directly by the the Noether symmetry of the system without perturbation is given. The concept of discrete high-order adiabatic invariant is presented, the criterion of the perturbation to the Noether symmetry is established, and the discrete the Noether adiabatic invariant induced directly by the perturbation to the Noether symmetry is obtained. Lastly, an example is discussed to illustrate the application of the results.
2
Content available remote

Local Phenomena in meta-mict Titanite

81%
EN
Pure titanite is a mineral with chemical composition CaTiSiO_{5}. Its structure consists of corner linked TiO_{6}-octahedra, SiO_{4}-tetrahedra and sevenfold coordinated Ca positions. In nature various impurities like U and Th can be incorporated in the structure showing alpha and beta radiation. On meta-mictization, a process which occurs in nature when a mineral is exposed to radioactive irradiation, strong modifications of the structure are observed. Recoil processes due to alpha radiation change over geological time scales the originally periodically structured material into a quasi-amorphous state with persisting short-range order but destroyed long-range order. We report IR and Raman spectra as well as X-ray diffraction data of meta-mict and heat treated titanite from the Cardiff mine, Canada. IR as well as the Raman modes are strongly broadened in the meta-mict material and sharpen on annealing. The OH-stretching mode at 3486 cm^{-1} indicates strong changes in the local environment of OH in meta-mict titanite. The appearance of the Raman excitations between 620 and 750 cm^{-1} in meta-mict titanite, which in IR spectra are due to Ti-O stretching from TiO_{6} octahedra, indicates the breakdown of the Raman selection rules. This points to the breaking of the octahedral symmetry of TiO_{6} polyhedra.
3
Content available remote

A New Potential Superhard Phase of OsN_2

61%
|
|
vol. 126
|
issue 3
740-747
EN
A new phase of C2/m OsN_2 is proposed in this paper. The crystal structure, elasticity and electronic properties of C2/m OsN_2 were studied by first-principles calculations. The elastic constants, the elastic moduli (B, G, and E) and Poisson's ratio v of OsN_2 have been investigated. From the first-principles calculations, we find that C2/m OsN_2 is metallic and mechanically stable. The quasi-harmonic Debye model, using a set of total energy versus molar volume obtained from the first-principles calculations, is applied to the study of the thermal and vibrational effects. The dependence of structural parameters, thermal expansions, heat capacities, Grüneisen parameters and Debye temperatures on the temperature and pressure are obtained in the whole pressure range from 0 to 80 GPa and temperature range from 0 to 800 K as well as compared with available data.
EN
In this paper, an optical microscope objective with large numerical number is inserted into a Mach-Zehnder interferometer, and this system is adopted to detect the surface morphologies of two ruled transmission gratings with area scale to a micrometer. The object waves transmitting from the gratings interfere with spherical reference wave, and the interferograms constructed are recorded by a high-resolution CCD. The surface maps of the gratings are retrieved from the interferograms, and the results are confirmed by the measurement with an atomic force microscope, with detection errors in nanometer scale. This work provides an optical non-destructive method for precise detection of small-area sophisticated object surfaces with an optical microscope objective.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.