Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
Content available remote

Collective mode dispersions of organic chain compounds

100%
Open Physics
|
2010
|
vol. 8
|
issue 3
283-288
EN
We investigate the collective mode dispersions for the tight-binding dielectric matrix with two one-dimensional electron bands per donor and acceptor chains, and the three-dimensional long-range Coulomb electron-electron interaction within the random phase approximation. The hybridized collective modes are the result of the strong coupling between the intraband plasmon and the interband dipolar modes due to strong dipole Coulomb interactions. Our calculations show the existence of the low-energy renormalized plasmon mode above the electron-hole quasi-continuum in the long wavelength limit. The obtained modes are brought into correspondence with the optical data of quasi-one-dimensional organic conductor tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ). Namely, the renormalized plasmon and the dipolar mode are assigned to the observed excitations at respective energy scales of roughly 10 meV and 0.75 eV, explaining why lower excitation is eliminated while higher excitation persists below the temperature of the Peierls phase transition.
EN
The dielectric response is considered within models of a one-band metal, a two-band insulator and a two-band metal using the semi-classical approximation. Corresponding dielectric functions are found. The dielectric function of two-band metal is found to be the interpolation between the Sellmeyer and Lorenz-Lorentz expressions, respectively. The frequencies of the collective modes are identified as the zeroes of the dielectric functions. The correspondence between the semi-classical approach used in this paper and the many-body calculation within the random-phase approximation is established.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.