Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
100%
EN
A new method of refractory metal (like Mo and Ta) ion beam production using the arc discharge ion source and CCl₂F₂ (dichlorodifluoromethane) used as a feeding gas supported into the discharge chamber is presented. It is based on etching of the refractory metal parts (e.g. anode or a dedicated tube) Cl and F containing plasma. The results of measurements of the dependences of ion currents on the working parameters like discharge and filament currents as well as on the magnetic field flux density of an external electromagnet coil are shown and discussed. The separated Mo⁺ and Ta⁺ beam currents of approximately 22 μA and 2 μA, respectively, were obtained.
Open Physics
|
2008
|
vol. 6
|
issue 3
638-642
EN
Single crystalline ZnO film is grown on GaN/sapphire (0001) substrate by molecular beam epitaxy. Ga2O3 is introduced into the ZnO/GaN heterostructure intentionally by oxygen-plasma pre-exposure on the GaN surface prior to ZnO growth. The crystalline orientation and interfacial microstructure are characterized by X-ray diffraction and transmission electron microscopy. X-ray diffraction analysis shows strong c-axis preferred orientation of the ZnO film. Cross-sectional transmission electron microscope images reveal that an additional phase is formed at the interface of ZnO/GaN. Through a comparison of diffraction patterns, we confirm that the interface layer is monoclinic Ga2O3 and the main epitaxial relationship should be $$ (0001)_{ZnO} \parallel (001)_{Ga_2 O_3 } \parallel (0001)_{GaN} $$ and $$ [2 - 1 - 10]_{ZnO} \parallel [010]_{Ga_2 O_3 } \parallel [2 - 1 - 10]_{GaN} $$.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.