Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

Refine search results

Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
PL
This article relates to a synthesising output feedback that is used to control a network of discrete events. The feedback stabilises the system without reducing its initial throughput and its synthesis is mainly based on the theory of residues and the Kleene operator. This article suggests some theoretical results and mathematical foundations of max-plus algebra theory, and in particularly, discusses various other aspects of controlling discrete processes and their modelling in the context of a linear max-plus system.
PL
The increasing complexity of information processing in distributed computer systems and microprocessors requires the use of time-saving devices and extended capacities of transmission channels. Processes in computers systems need effective processing time. This article describes an application of the theory of the Max Plus Linear System (MPLS) to controlling digital information processing and transmission time in information systems. System processes are described by an MPLS state equation and an MPLS output equation. The MPLS model makes use of formal mathematical methods of max-plus algebra which include maximization and addition operations in the domain of non-negative real numbers with the addition of minus infinity. The input data and the structure of the processes under consideration are represented by the Timed Event Graph (TEG) formalism constituting a special case of Timed Petri Nets. The suggested MPLS methods are useful for investigating selected properties of network models. They may be applied, among others, to evaluate performance criteria, cycle time, predictive control etc. This article presents the theoretical considerations used to determine the input signals controlling discrete processes, which are then illustrated with examples of numerical computations.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.