Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
We report on structural and magnetic properties of glass-coated microwires of Ni-Mn-Ga-based Heusler alloys. Structural characterization of the as-prepared microwires revealed that they have a cubic structure at room temperature. It is shown that magnetic properties of microwires can be tailored by heat treatment as well as by removing the glass coating. Specifically, annealing of the microwires has a marked influence of the Curie temperature T_{C} which increases significatly in the heat-treated samples. Release of internal stresses in the microwires by removing the glass coating causes magnetization and the Curie temperature to decrease. This allowed us to conclude that in the studied microwires the magnetostriction constant is positive and estimate the value of internal stresses as being roughly equal to 1.5 GPa.
EN
Several topics of photonics are targeted at the enhancement of magneto-optical response in the nanostructures. One of the approaches is creating of the magnetoplasmonic crystals based on the substrates made of the digital discs (CD, DVD, BD) with ferromagnetic film. It is necessary to investigate in-plane anisotropy of magnetoplasmonic crystals and influence of the ferromagnetic layer thickness on increase of the mean free path of edge magnetoplasmons. Ni-based magnetoplasmonic crystals were investigated using the vibrating sample magnetometer by LakeShore. All samples had anisotropic in-plane magnetic properties because of the induced anisotropy caused by the stripe-like periodic structure of the substrates. A step-like behaviour of the hysteresis loops in case of the transverse plasmon propagation way was observed for Ni-based magnetoplasmonic crystals. Measurements along the plasmon propagation way showed near-rectangular hysteresis loops typical for the Ni-based thin films for certain samples. Step-like behaviour of the hysteresis loops for the Ni-based magnetoplasmonic crystals can be explained as a result of interaction between Ni films that covered the top and the lateral sides of the substrate stripes.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.