Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
Acta Physica Polonica A
|
2017
|
vol. 132
|
issue 5
1450-1455
EN
Positron annihilation spectroscopy is often performed using radioactive sources for bulk measurements or positron beams for depth resolved measurements. Both have many advantages and great capabilities for a variety of applications. In the recent history, we have shown that positron annihilation spectroscopy can be carried out directly using high energy photons without the need for positron source or positron beam. This approach brings unique capabilities for some specific applications and promotes the use of positron annihilation spectroscopy in new areas of materials science and probably in industrial applications. Some of the important applications include developing new nondestructive highly penetrating sensitive probe for structural and engineering materials. It can also greatly advance positron applications in bulk semiconductors, electronic and photonic materials as well as in polymers, ceramics, and liquids. The recently developed γ-induced positron spectroscopy in HZDR in Dresden provides an example of an excellent facility for many of these applications. When incorporated with pulsed accelerators, γ-induced positron annihilation spectroscopy may trigger novel studies of transient states in matter and explore several solid-state processes that take place on short time scale. In this article I will review the history and development of the technique and its incorporation in a wide range of accelerators including table top electron accelerators, pulsed electron accelerators, and Van de Graaff accelerators. Then I will introduce a design for a new γ-induced positron annihilation spectroscopy facility based on using small nuclear research reactors or neutron generators. The paper presents all the possible approaches for γ-induced positron annihilation spectroscopy and discusses its potential and limitations to guide the efforts in further development of the technique and illustrate the unique aspects that the technique can bring to positron science and applications.
|
|
vol. 125
|
issue 3
764-766
EN
Native defects in complex oxides play a crucial role in determining their optical, electrical, and magnetic properties and it is difficult to identify and characterize them. Positron lifetime spectroscopy is a powerful technique to study vacancy defects; however its application to complex oxides has been limited. In this work we apply positron lifetime spectroscopy to study open volume defects in rare earth doped yttrium aluminum garnet (YAG) complex oxides grown in argon atmosphere. In YAG single crystals, positron lifetime measurements identified isolated aluminum vacancies and complexes of aluminum vacancy and neighbor oxygen vacancies. Thermoluminescence measurements were also performed to elucidate the interaction between trapping defects and luminescence centers. By combining positron lifetime and thermoluminescence, both the defect type and its effect on the optical properties of YAG crystals were revealed.
EN
A digital coincidence Doppler broadening (CDB) spectrometer consisting of two HPGe detectors is assembled; the energy resolution of each detector is 1.1 keV at energies near the annihilation line. Two desktop applications for CDB spectra processing are developed. TLIST Processor converts two-dimensional CDB spectra into one-dimensional spectra. Another tool SW Calculator deconvolutes the experimental CDB spectra into contributions from positron annihilation with valence, core and conduction band electrons. The program estimates the energies of the corresponding electrons and evaluates S and W parameters of the CDB spectra.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.