Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

Refine search results

Preferences help
enabled [disable] Abstract
Number of results

Results found: 1

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
Open Chemistry
|
2010
|
vol. 8
|
issue 6
1227-1235
EN
A novel composite superionic system, [Ag2HgI4:0.2AgI]:xCuI, (x = 0.2, 0.4, 0.6 mol. wt.%), was prepared and [Ag2HgI4:0.2AgI] mixed system was used as the host. Electrical conductivity was measured to study the transition behavior at frequencies of 100 Hz, 120 Hz, 1 kHz, and 10 kHz in the temperature range 90°–170°C by a Gen Rad 1659 RLC Digibridge. Sharp increase in conductivity was observed for β-α phase transitions. As a result of increase in the dopant-to-host ratio, the conductivity of the system exhibited Arrhenius (thermally activated)-type behavior. X-ray powder diffraction, differential scanning calorimetry (DSC), differential thermal analysis (DTA) and thermo-gravimetric analysis (TGA) studies confirmed the doping effect on the transition in the host, the phase transition temperature increased with an increase in the dopant concentration. Activation energies for the system in eV both for the pretransition and post-transition phase transformations are reported. The addition of CuI to [Ag2HgI4:0.2AgI] shifted the phase transition of the host [Ag2HgI4:0.2AgI], due to an interaction between [Ag2HgI4:0.2AgI] and CuI.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.