Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 5

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
100%
EN
In this paper, we investigate the statistical and scaling properties of the California earthquakes’ inter-events over a period of the recent 40 years. To detect long-term correlations behavior, we apply detrended fluctuation analysis (DFA), which can systematically detect and overcome nonstationarities in the data set at all time scales. We calculate for various earthquakes with magnitudes larger than a given M. The results indicate that the Hurst exponent decreases with increasing M; characterized by a Hurst exponent, which is given by, H = 0:34 + 1:53/M, indicating that for events with very large magnitudes M, the Hurst exponent decreases to 0:50, which is for independent events.
2
Content available remote

Superstatistics and renewal critical events

84%
EN
An approach to intermittent systems based on renewal processes is reviewed. The Waiting Times (WTs) between events are the main variables of interest in intermittent systems. A crucial role is played by the class of critical events, characterized by Non-Poisson statistics and non-exponential WT distribution. A particular important case is given by WT distributions with power tail. Critical events play a crucial role in the behavior of a property known as Renewal Aging. Focusing on the role of critical events, the relation between superstatistics and non-homogeneous Poisson processes is discussed, and the role of Renewal Aging is illustrated by comparing a Non-Poisson model with a Poisson one, both of them modulated by a periodic forcing. It is shown that the analysis of Renewal Aging is sensitive to the presence of critical events and that this property can be exploited to detect Non-Poisson statistics in a time series. As a consequence, it is claimed that, apart from the characterization of superstatistical features such as the distribution of the intensive parameter or the separation of the time scales, the Renewal Aging property can give some effort to better determine the role of Non-Poisson critical events in intermittent systems.
EN
Polyethylene Glycol has an irregular current characteristic under constant voltage and slowly varying relative humidity. The current through a thin film of Gamma-isocyanatopropyltriethoxysilane added Polyethylene glycol (PEG-Si), its hydrogenated and hydrophobically modified forms, as a function of increasing relative humidity at equal time steps is analyzed for chaoticity. We suggest that the irregular behavior of current through PEG-Si thin films as a function of increasing relative humidity could best be analyzed for chaoticity using both time series analysis and detrended uctuation analysis; the relative humidity is kept as a slowly varying parameter. The presence of more then one regime is suggested by the calculation of the maximal Lyapunov exponents. Furthermore, the maximal Lyapunov exponent in each of the regimes was positive, thus confirming the presence of low dimensional chaos. DFA also confirms the presence of at least two different regimes, in agreement with the behavior of the maximal Lyapunov exponent in the time series analysis. We also suggest that the irregular behavior of the current through PEG-Si can be reduced by hydrogenating and hydrophobically modifying PEG-Si and the improvement in stability can be confirmed by our study.
Open Physics
|
2009
|
vol. 7
|
issue 2
264-269
EN
The SEM microfractographies of Zircaloy-4 are studied by the time-series method. We first develop a computer application which associates a time series to each SEM micrograph. Furthermore, we will apply the phase space embedding technique to reconstruct the attractor and to compute the autocorrelation dimension. Using the fractal analysis technique, the SEM microfractographies of the fracture surface of the Zircaloy-4 samples have been analyzed.
EN
We present experimental and numerical studies for level statistics in incomplete spectra obtained with microwave networks simulating quantum chaotic graphs with broken time reversal symmetry. We demonstrate that, if resonance frequencies are randomly removed from the spectra, the experimental results for the nearest-neighbor spacing distribution, the spectral rigidity and the average power spectrum are in good agreement with theoretical predictions for incomplete sequences of levels of systems with broken time reversal symmetry.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.