Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
We report on Kelvin probe force microscopy and electron backscatter diffraction measurements of 3C-SiC epitaxial layers grown on exactly oriented Si-face 4H-SiC (0001) substrates in a horizontal hot-wall chemical vapor deposition reactor, in the temperature range from 1150°C to 1620°C, under H_{2} or H_{2} +SiH_{4} atmosphere. The investigated layers were doped with nitrogen (for n-type) and aluminium (for p-type). The electron backscatter diffraction analysis revealed structure of polytype 3C blocks with a relative rotation of 60 and/or 120°. The Kelvin probe force microscopy measurements revealed cubic substructure as a equilateral triangle objects contrast which is characteristic of 3C silicon carbide polytype. The surface potential contrast was found to be dependent on the type and concentration of doping, which could be explained in terms of the impurities accumulation at block boundaries.
EN
Undoped 4H silicon carbide epitaxial layers were deposited by means of CVD method with growth rates of 2 μm/h, 5 μm/h and 11 μm/h at 1540°C on n-doped 8°, 4° and 0° off-cut 4H-SiC (00·1) substrates. The structural defects were studied before and after growth of the epitaxial layers by means of conventional Lang topography, synchrotron white beam and monochromatic beam topography and by means of X-ray specular reflectometry. The topographic investigations confirmed the continuation of the dislocations in the epitaxial deposit on the 8° and 4° off-cut substrates without new extended defects. The important difference occurred in the surface roughness of the epitaxial layers, which increased for higher growth rates. The epitaxial layers grown on 0° off-cut substrates at analogous condition contained usually other SiC polytypes, but the influence of the growth rate on the distribution of the polytypes was observed.
EN
X-ray reflectometric and diffraction topographic methods were applied for examination of 4H and 6H silicon carbide substrates finished with various regimes, as well as, silicon carbide epitaxial layers. The investigations indicated a very good quality of the substrate surfaces finished with the process established at the Institute of Electronic Materials Technology, which provided the surface roughness σ = 0.55 ± 0.07 nm for 4H-SiC wafers. These values were better than those of substrate wafers offered by many commercial producers. The surface roughness was decreased during the initial high temperature etching to σ = 0.22 ± 0.07 nm. A relatively good structural quality was confirmed in the case of 4H epitaxial wafers deposited on the substrates prepared from the crystals manufactured at the IEMT, with the 8° off-cut from the main (001) plane.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.