Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
PL
The 316L-hydroxyapatite biocomposites were produced by the powder metallurgy technology. The properties and microstructure of these materials are affected by the chemical composition of the powders mixture and the sintering temperature. The sintering temperature of 1240°C and hydroxyapatite addition in an amount of 3% of mass obtained the highest density and hardness and smaller open and closed porosity. Hydroxyapatite addition to austenitic stainless steel modified sintering behaviour. During heating the thermal decomposition of hydroxyapatite took place, which led to the formation of a CaO phase. However, phosphorus diffused into the austenitic matrix and was involved in the eutectic transformation.
PL
The combinations of good biocompatibility of hydroxyapatite and good mechanical properties of 316L steel should lead to obtain better biomaterial. 316L-hydroxyapatite composites were produced by the PM technology. Microstructure and properties of these materials were affected by chemical composition of powders mixture and sintering temperature. Sintering temperature of 1240°C and hydroxyapatite addition of 3 wt. % provide to obtain the best density and hardness sintered 316L-hydroxyapatite compositions.
PL
In the present study copper modificated 410L stainless steel was investigated. This steel was fabricated based on powders, by the pressing and sintering. By varying amount of copper and sintering temperature the properties of the 410L stainless steel can be improved. At sintering temperature of 1240°C and at high copper levels the microstructure of steel is predominately martensitic. The sintered density of steel increases as the copper level increases, with a drop-off in density at 4 w/o Cu. It has been shown that stainless steels with higher copper levels have higher hardness and better density in comparison to steels sintered in 1260°C. In general, higher sintering temperature and low copper levels favor the formation of ferrite. An examination of the microstructures of these steels reveals that they are a mixture of ferrite and martensite.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.