Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 11

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
|
|
vol. 125
|
issue 4
944-952
EN
Progress in designing of new low-cost magnetoelectronic planar devices requires new artificial films combining tuneable magnetic and electric properties. In this context, metal-insulator films are prospective for synthesis of materials with tailored physical properties that could be controlled with films composition and synthesis regimes. Present overview covers the summary of recent experimental results on complimentary and systematic study of macroscopic and local magnetic properties of films using vibrating sample magnetometer and Mössbauer spectroscopy with respect to phase composition and structural analysis at nanoscale by X-ray absorption spectroscopy in the extended X-ray absorption fine structure range, transmission electron microscopy and high-resolution transmission electron microscopy. Specific relationship between films structure and resulting magnetic properties (SP relaxation, core-shell exchange interaction, perpendicular magnetic anisotropy) is considered. Effects of magnetic and electric percolation in films are discussed in correlation with synthesis regimes (atmosphere of deposition, temperature of the substrate) and films composition. Physical mechanisms and models describing magnetic and electric properties of composite films are analyzed. Finally, technological approaches are proposed for tuning films properties towards their desired combination with respect to application in designing of sensors and planar (non-coil) inductive elements.
|
|
vol. 125
|
issue 6
1418-1420
EN
Paper reports the results of X-ray diffraction, X-ray absorption spectroscopy and the Mössbauer spectroscopy of metal-insulator films sintered in Ar+O atmosphere evidencing the difference in oxidation of FeCoZr nanoparticles embedded into Al_2O_3 and Pb(ZrTi)O_3 matrixes. It is proved that Al_2O_3 matrix with high resistance to oxidation favors the formation of nanoparticles with "metal core-oxide shell" structure, while fully oxidized nanoparticles are observed inside Pb(ZrTi)O_3 matrix.
EN
This paper presents the investigations of electrical properties and effect of annealing on conductivity of (CoFeZr)_{x}(CaF_2)_{100-x} nanocomposites produced by ion-beam sputtering in the Ar and O_2 ambient. Investigations into conductivity of (CoFeZr)_{x}(CaF_2)_{100-x} nanocomposites depending on the measuring temperature and the annealing temperature have been performed. The application of a combined argon-oxygen beam brings about lowering of the potential barrier on the surface of nanoparticles. In the course of annealing the additional oxidation occurs. First it proceeds on the surface and then all through the metallic-phase particles.
EN
Peculiarities of phase composition and morphology in nanostructured (Fe_{70}Al_{30})_{1-x}(Al_2O_3)_x (x=64-80 wt.%) powder alloys prepared by self-propagated high temperature synthesis have been studied by ^{57}Fe transmission Mössbauer spectroscopy, scanning electron microscopy, and X-ray diffraction. It has been established that phase composition of alloys has not been affected by Al_2O_3 contribution. Contrary, atomic arrangement in B2 FeAl phase depends on the volume fraction of Al_2O_3 resulting in the migration of Al atoms from B2 FeAl lattice.
EN
Nanoarrays of Co nanorods were formed by means of electrochemical deposition in the nanoporous SiO_2/n-Si templates. Structure and magnetic properties at room temperatures were studied by means of atomic force and scanning electron microscopies, vibrating sample magnetometry. The presence of perpendicular magnetic anisotropy component at room temperature makes Co nanorods in the nanoporous SiO_2/n-Si templates promising for nanoelectronic devices and biomedical applications.
EN
This paper investigates the inductive contribution to AC conductance in the granular nanocomposites (Fe_{0.45}Co_{0.45}Zr_{0.10})_{x}(Al_2O_3)_{1-x}. The initial nanocomposites studied were manufactured in Ar+O_2 atmosphere by ion-beam sputtering of the target containing Fe_{0.45}Co_{0.45}Zr_{0.10} and alumina stripes and then subjected to the annealing procedure in air over the temperature range 373 K < T_{a} < 873 K. These samples, before and after annealing, were studied using the temperature 77 K < T_{p} < 300 K and frequency 50 Hz < f < 1 MHz dependences of a real part of the admittance σ(T, f). Analysis of the observed σ (f, T_{p}) dependences for x < 0.5 demonstrated that in the studied samples the equivalent circuits with the capacitive and noncoil-like inductive contributions can be accomplished. Just in this case, the capacitive properties of RLC circuit with the phase angle - 90° ≤ θ_{L} < 0° are exhibited at low frequencies and the inductive properties with 0° ≤ θ_{H} < 90° become apparent at high frequencies. A value of the critical frequency f_{R}, where θ_{H} changes sign, depends on the metallic phase concentration x, measuring temperature T_{p}, and annealing temperature T_{a}.
EN
In this paper the results of investigations of electrical properties of metal-dielectric nanocomposites (FeCoZr)_x(CaF₂)_{100-x} are presented. The samples with the metallic phase content x=45.7 at.% were produced by ion-beam sputtering method in pure argon atmosphere, and subsequently annealed at 398 K for 15 min. The measurements of electrical properties were performed in the frequency range from 50 Hz to 1 MHz. The frequency dependences of phase angle θ, capacity C_{p}, conductivity σ and dielectric loss factor tanδ were measured at seven different temperatures ranging from 148 K to 263 K. It was found that the nanocomposite exhibits the phenomena of voltage resonance and current resonance, characteristic of the conventional RLC circuits with series and parallel connections of elements.
EN
The paper reports on the results of structural analysis and magnetometry of granular nanocomposite films FeCoZr-CaF₂ irradiated with Xe and Kr ions at different fluences. The observed effect of enhanced perpendicular magnetic anisotropy characterizing pristine films is discussed with respect to the irradiation regimes and structural changes of the films originating from the impact of ions.
EN
The paper is focused on the results of Xe ions irradiation of nanocomposite FeCoZr-CaF₂ films synthesized in the oxygen-containing atmosphere. Combined influence of nanoparticles partial oxidation and ion irradiation with different fluences on the crystalline structure, phase composition and magnetic anisotropy is analysed by X-ray diffraction, the Mössbauer spectroscopy and vibrating sample magnetometry. The origin of the detected progressive enhancement of perpendicular magnetic anisotropy as the result of films oxidation and irradiation is discussed in the context of formation of nanoparticles oxide shells and ion tracks along the films normal.
EN
In this work anisotropic magnetoresistance in nanogranular Ni films and Ni nanorods on Si(100) wafer substrates was studied in wide ranges of temperature and magnetic field. To produce Ni films and nanorods we used electrochemical deposition of Ni clusters either directly on the Si substrate or into pores in SiO₂ layer on the Si substrate. To produce mesopores in SiO₂ layer, SiO₂/Si template was irradiated by a scanned beam of swift heavy 350 MeV ¹⁹⁷Au²⁶⁺ ions with a fluence of 5×10⁸ cm¯² and then chemically etched in diluted hydrofluoric acid. Pores, randomly distributed in the template have diameters of 100-250 nm and heights about 400-500 nm. Comparison of temperature dependences of resistance and magnetoresistance in Ni films and n-Si/SiO₂/Ni structures with Ni nanorods showed that they are strongly dependent on orientation of magnetic field and current vectors relative to each other and the plane of Si substrate. Moreover, magnetoresistance values in n-Si/SiO₂/Ni nanostructures can be controlled not only by electric field applied along Si substrate but also by additionally applied transversal bias voltage.
EN
A study of magnetotransport in the n-Si/SiO_2/Ni nanostructures with granular Ni nanorods in SiO_2 pores was performed over the temperature range 2-300 K and at the magnetic fields induction up to 8 T. The n-Si/SiO_2/Ni Schottky nanostructures display the enhanced magnetoresistive effect at 25 K due to the impurity avalanche mechanism.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.